aboutsummaryrefslogtreecommitdiff
path: root/arch/arm64/include/asm/stacktrace/common.h
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2024-11-18 18:10:37 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2024-11-18 18:10:37 -0800
commitba1f9c8fe3d443a78814cdf8ac8f9829b5ca7095 (patch)
tree121eccce6f426f5d2adfc7f285144fd7956a4357 /arch/arm64/include/asm/stacktrace/common.h
parent9aa4c37f71b9a0a4f51692fbb874888c139805ce (diff)
parent83ef4a378e563d085ddd7214c2a393116b5f3435 (diff)
downloadlinux-ba1f9c8fe3d443a78814cdf8ac8f9829b5ca7095.tar.gz
linux-ba1f9c8fe3d443a78814cdf8ac8f9829b5ca7095.tar.bz2
linux-ba1f9c8fe3d443a78814cdf8ac8f9829b5ca7095.zip
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas: - Support for running Linux in a protected VM under the Arm Confidential Compute Architecture (CCA) - Guarded Control Stack user-space support. Current patches follow the x86 ABI of implicitly creating a shadow stack on clone(). Subsequent patches (already on the list) will add support for clone3() allowing finer-grained control of the shadow stack size and placement from libc - AT_HWCAP3 support (not running out of HWCAP2 bits yet but we are getting close with the upcoming dpISA support) - Other arch features: - In-kernel use of the memcpy instructions, FEAT_MOPS (previously only exposed to user; uaccess support not merged yet) - MTE: hugetlbfs support and the corresponding kselftests - Optimise CRC32 using the PMULL instructions - Support for FEAT_HAFT enabling ARCH_HAS_NONLEAF_PMD_YOUNG - Optimise the kernel TLB flushing to use the range operations - POE/pkey (permission overlays): further cleanups after bringing the signal handler in line with the x86 behaviour for 6.12 - arm64 perf updates: - Support for the NXP i.MX91 PMU in the existing IMX driver - Support for Ampere SoCs in the Designware PCIe PMU driver - Support for Marvell's 'PEM' PCIe PMU present in the 'Odyssey' SoC - Support for Samsung's 'Mongoose' CPU PMU - Support for PMUv3.9 finer-grained userspace counter access control - Switch back to platform_driver::remove() now that it returns 'void' - Add some missing events for the CXL PMU driver - Miscellaneous arm64 fixes/cleanups: - Page table accessors cleanup: type updates, drop unused macros, reorganise arch_make_huge_pte() and clean up pte_mkcont(), sanity check addresses before runtime P4D/PUD folding - Command line override for ID_AA64MMFR0_EL1.ECV (advertising the FEAT_ECV for the generic timers) allowing Linux to boot with firmware deployments that don't set SCTLR_EL3.ECVEn - ACPI/arm64: tighten the check for the array of platform timer structures and adjust the error handling procedure in gtdt_parse_timer_block() - Optimise the cache flush for the uprobes xol slot (skip if no change) and other uprobes/kprobes cleanups - Fix the context switching of tpidrro_el0 when kpti is enabled - Dynamic shadow call stack fixes - Sysreg updates - Various arm64 kselftest improvements * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (168 commits) arm64: tls: Fix context-switching of tpidrro_el0 when kpti is enabled kselftest/arm64: Try harder to generate different keys during PAC tests kselftest/arm64: Don't leak pipe fds in pac.exec_sign_all() arm64/ptrace: Clarify documentation of VL configuration via ptrace kselftest/arm64: Corrupt P0 in the irritator when testing SSVE acpi/arm64: remove unnecessary cast arm64/mm: Change protval as 'pteval_t' in map_range() kselftest/arm64: Fix missing printf() argument in gcs/gcs-stress.c kselftest/arm64: Add FPMR coverage to fp-ptrace kselftest/arm64: Expand the set of ZA writes fp-ptrace does kselftets/arm64: Use flag bits for features in fp-ptrace assembler code kselftest/arm64: Enable build of PAC tests with LLVM=1 kselftest/arm64: Check that SVCR is 0 in signal handlers selftests/mm: Fix unused function warning for aarch64_write_signal_pkey() kselftest/arm64: Fix printf() compiler warnings in the arm64 syscall-abi.c tests kselftest/arm64: Fix printf() warning in the arm64 MTE prctl() test kselftest/arm64: Fix printf() compiler warnings in the arm64 fp tests kselftest/arm64: Fix build with stricter assemblers arm64/scs: Drop unused prototype __pi_scs_patch_vmlinux() arm64/scs: Deal with 64-bit relative offsets in FDE frames ...
Diffstat (limited to 'arch/arm64/include/asm/stacktrace/common.h')
-rw-r--r--arch/arm64/include/asm/stacktrace/common.h74
1 files changed, 43 insertions, 31 deletions
diff --git a/arch/arm64/include/asm/stacktrace/common.h b/arch/arm64/include/asm/stacktrace/common.h
index f63dc654e545..821a8fdd31af 100644
--- a/arch/arm64/include/asm/stacktrace/common.h
+++ b/arch/arm64/include/asm/stacktrace/common.h
@@ -60,13 +60,27 @@ static inline void unwind_init_common(struct unwind_state *state)
state->stack = stackinfo_get_unknown();
}
-static struct stack_info *unwind_find_next_stack(const struct unwind_state *state,
- unsigned long sp,
- unsigned long size)
+/**
+ * unwind_find_stack() - Find the accessible stack which entirely contains an
+ * object.
+ *
+ * @state: the current unwind state.
+ * @sp: the base address of the object.
+ * @size: the size of the object.
+ *
+ * Return: a pointer to the relevant stack_info if found; NULL otherwise.
+ */
+static struct stack_info *unwind_find_stack(struct unwind_state *state,
+ unsigned long sp,
+ unsigned long size)
{
- for (int i = 0; i < state->nr_stacks; i++) {
- struct stack_info *info = &state->stacks[i];
+ struct stack_info *info = &state->stack;
+ if (stackinfo_on_stack(info, sp, size))
+ return info;
+
+ for (int i = 0; i < state->nr_stacks; i++) {
+ info = &state->stacks[i];
if (stackinfo_on_stack(info, sp, size))
return info;
}
@@ -75,36 +89,31 @@ static struct stack_info *unwind_find_next_stack(const struct unwind_state *stat
}
/**
- * unwind_consume_stack() - Check if an object is on an accessible stack,
- * updating stack boundaries so that future unwind steps cannot consume this
- * object again.
+ * unwind_consume_stack() - Update stack boundaries so that future unwind steps
+ * cannot consume this object again.
*
* @state: the current unwind state.
+ * @info: the stack_info of the stack containing the object.
* @sp: the base address of the object.
* @size: the size of the object.
*
* Return: 0 upon success, an error code otherwise.
*/
-static inline int unwind_consume_stack(struct unwind_state *state,
- unsigned long sp,
- unsigned long size)
+static inline void unwind_consume_stack(struct unwind_state *state,
+ struct stack_info *info,
+ unsigned long sp,
+ unsigned long size)
{
- struct stack_info *next;
-
- if (stackinfo_on_stack(&state->stack, sp, size))
- goto found;
-
- next = unwind_find_next_stack(state, sp, size);
- if (!next)
- return -EINVAL;
+ struct stack_info tmp;
/*
* Stack transitions are strictly one-way, and once we've
* transitioned from one stack to another, it's never valid to
* unwind back to the old stack.
*
- * Remove the current stack from the list of stacks so that it cannot
- * be found on a subsequent transition.
+ * Destroy the old stack info so that it cannot be found upon a
+ * subsequent transition. If the stack has not changed, we'll
+ * immediately restore the current stack info.
*
* Note that stacks can nest in several valid orders, e.g.
*
@@ -115,16 +124,15 @@ static inline int unwind_consume_stack(struct unwind_state *state,
* ... so we do not check the specific order of stack
* transitions.
*/
- state->stack = *next;
- *next = stackinfo_get_unknown();
+ tmp = *info;
+ *info = stackinfo_get_unknown();
+ state->stack = tmp;
-found:
/*
* Future unwind steps can only consume stack above this frame record.
* Update the current stack to start immediately above it.
*/
state->stack.low = sp + size;
- return 0;
}
/**
@@ -137,21 +145,25 @@ found:
static inline int
unwind_next_frame_record(struct unwind_state *state)
{
+ struct stack_info *info;
+ struct frame_record *record;
unsigned long fp = state->fp;
- int err;
if (fp & 0x7)
return -EINVAL;
- err = unwind_consume_stack(state, fp, 16);
- if (err)
- return err;
+ info = unwind_find_stack(state, fp, sizeof(*record));
+ if (!info)
+ return -EINVAL;
+
+ unwind_consume_stack(state, info, fp, sizeof(*record));
/*
* Record this frame record's values.
*/
- state->fp = READ_ONCE(*(unsigned long *)(fp));
- state->pc = READ_ONCE(*(unsigned long *)(fp + 8));
+ record = (struct frame_record *)fp;
+ state->fp = READ_ONCE(record->fp);
+ state->pc = READ_ONCE(record->lr);
return 0;
}