aboutsummaryrefslogtreecommitdiff
path: root/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'kernel')
-rw-r--r--kernel/Kconfig.preempt27
-rw-r--r--kernel/audit.c23
-rw-r--r--kernel/audit.h7
-rw-r--r--kernel/auditfilter.c9
-rw-r--r--kernel/auditsc.c69
-rw-r--r--kernel/bpf/Makefile3
-rw-r--r--kernel/bpf/arena.c38
-rw-r--r--kernel/bpf/arraymap.c26
-rw-r--r--kernel/bpf/bpf_cgrp_storage.c4
-rw-r--r--kernel/bpf/bpf_inode_storage.c5
-rw-r--r--kernel/bpf/bpf_local_storage.c79
-rw-r--r--kernel/bpf/bpf_struct_ops.c115
-rw-r--r--kernel/bpf/bpf_task_storage.c8
-rw-r--r--kernel/bpf/btf.c57
-rw-r--r--kernel/bpf/cgroup.c2
-rw-r--r--kernel/bpf/core.c8
-rw-r--r--kernel/bpf/dispatcher.c3
-rw-r--r--kernel/bpf/hashtab.c56
-rw-r--r--kernel/bpf/helpers.c29
-rw-r--r--kernel/bpf/kmem_cache_iter.c238
-rw-r--r--kernel/bpf/memalloc.c5
-rw-r--r--kernel/bpf/range_tree.c272
-rw-r--r--kernel/bpf/range_tree.h21
-rw-r--r--kernel/bpf/syscall.c191
-rw-r--r--kernel/bpf/task_iter.c6
-rw-r--r--kernel/bpf/token.c1
-rw-r--r--kernel/bpf/trampoline.c60
-rw-r--r--kernel/bpf/verifier.c597
-rw-r--r--kernel/cgroup/cgroup.c42
-rw-r--r--kernel/cgroup/cpuset.c157
-rw-r--r--kernel/cgroup/freezer.c97
-rw-r--r--kernel/cgroup/rstat.c19
-rw-r--r--kernel/configs/debug.config1
-rw-r--r--kernel/cpu.c2
-rw-r--r--kernel/cred.c6
-rw-r--r--kernel/debug/kdb/kdb_bp.c6
-rw-r--r--kernel/debug/kdb/kdb_keyboard.c33
-rw-r--r--kernel/debug/kdb/kdb_main.c69
-rw-r--r--kernel/dma/Kconfig17
-rw-r--r--kernel/dma/coherent.c14
-rw-r--r--kernel/dma/debug.c89
-rw-r--r--kernel/dma/mapping.c37
-rw-r--r--kernel/entry/common.c2
-rw-r--r--kernel/entry/kvm.c4
-rw-r--r--kernel/events/core.c165
-rw-r--r--kernel/events/internal.h1
-rw-r--r--kernel/events/uprobes.c608
-rw-r--r--kernel/exit.c1
-rw-r--r--kernel/fork.c5
-rw-r--r--kernel/futex/core.c12
-rw-r--r--kernel/futex/pi.c6
-rw-r--r--kernel/irq/devres.c3
-rw-r--r--kernel/irq/irqdesc.c30
-rw-r--r--kernel/irq/irqdomain.c2
-rw-r--r--kernel/irq/proc.c12
-rw-r--r--kernel/kcmp.c4
-rw-r--r--kernel/kcsan/debugfs.c77
-rw-r--r--kernel/kprobes.c91
-rw-r--r--kernel/locking/lockdep.c46
-rw-r--r--kernel/locking/mutex.c59
-rw-r--r--kernel/locking/mutex.h27
-rw-r--r--kernel/locking/osq_lock.c3
-rw-r--r--kernel/locking/qspinlock_paravirt.h36
-rw-r--r--kernel/locking/rtmutex.c53
-rw-r--r--kernel/locking/rtmutex_api.c20
-rw-r--r--kernel/locking/rtmutex_common.h3
-rw-r--r--kernel/locking/rwbase_rt.c8
-rw-r--r--kernel/locking/rwsem.c4
-rw-r--r--kernel/locking/spinlock.c8
-rw-r--r--kernel/locking/spinlock_rt.c19
-rw-r--r--kernel/locking/test-ww_mutex.c8
-rw-r--r--kernel/locking/ww_mutex.h51
-rw-r--r--kernel/module/dups.c1
-rw-r--r--kernel/module/kmod.c1
-rw-r--r--kernel/module/main.c15
-rw-r--r--kernel/nsproxy.c5
-rw-r--r--kernel/padata.c7
-rw-r--r--kernel/pid.c20
-rw-r--r--kernel/power/energy_model.c52
-rw-r--r--kernel/printk/internal.h3
-rw-r--r--kernel/printk/printk.c56
-rw-r--r--kernel/printk/printk_safe.c18
-rw-r--r--kernel/rcu/Kconfig28
-rw-r--r--kernel/rcu/rcu_segcblist.h1
-rw-r--r--kernel/rcu/rcuscale.c8
-rw-r--r--kernel/rcu/rcutorture.c92
-rw-r--r--kernel/rcu/refscale.c56
-rw-r--r--kernel/rcu/srcutiny.c2
-rw-r--r--kernel/rcu/srcutree.c133
-rw-r--r--kernel/rcu/tasks.h20
-rw-r--r--kernel/rcu/tree.c24
-rw-r--r--kernel/rcu/tree_nocb.h13
-rw-r--r--kernel/rcu/tree_plugin.h22
-rw-r--r--kernel/rcu/tree_stall.h57
-rw-r--r--kernel/scftorture.c54
-rw-r--r--kernel/sched/core.c289
-rw-r--r--kernel/sched/cpufreq_schedutil.c3
-rw-r--r--kernel/sched/deadline.c57
-rw-r--r--kernel/sched/debug.c7
-rw-r--r--kernel/sched/ext.c975
-rw-r--r--kernel/sched/fair.c42
-rw-r--r--kernel/sched/features.h3
-rw-r--r--kernel/sched/idle.c5
-rw-r--r--kernel/sched/pelt.c2
-rw-r--r--kernel/sched/rt.c67
-rw-r--r--kernel/sched/sched.h155
-rw-r--r--kernel/sched/stats.h29
-rw-r--r--kernel/sched/syscalls.c46
-rw-r--r--kernel/sched/wait_bit.c90
-rw-r--r--kernel/signal.c523
-rw-r--r--kernel/smp.c4
-rw-r--r--kernel/softirq.c83
-rw-r--r--kernel/sys.c45
-rw-r--r--kernel/sysctl.c1
-rw-r--r--kernel/taskstats.c18
-rw-r--r--kernel/time/Kconfig5
-rw-r--r--kernel/time/Makefile2
-rw-r--r--kernel/time/alarmtimer.c96
-rw-r--r--kernel/time/clockevents.c42
-rw-r--r--kernel/time/clocksource.c40
-rw-r--r--kernel/time/hrtimer.c234
-rw-r--r--kernel/time/itimer.c22
-rw-r--r--kernel/time/ntp.c840
-rw-r--r--kernel/time/posix-cpu-timers.c72
-rw-r--r--kernel/time/posix-timers.c267
-rw-r--r--kernel/time/posix-timers.h8
-rw-r--r--kernel/time/sched_clock.c34
-rw-r--r--kernel/time/sleep_timeout.c377
-rw-r--r--kernel/time/tick-internal.h3
-rw-r--r--kernel/time/tick-sched.c27
-rw-r--r--kernel/time/time.c20
-rw-r--r--kernel/time/timekeeping.c649
-rw-r--r--kernel/time/timekeeping_debug.c13
-rw-r--r--kernel/time/timekeeping_internal.h25
-rw-r--r--kernel/time/timer.c197
-rw-r--r--kernel/time/vsyscall.c7
-rw-r--r--kernel/trace/Kconfig10
-rw-r--r--kernel/trace/bpf_trace.c116
-rw-r--r--kernel/trace/fgraph.c155
-rw-r--r--kernel/trace/ftrace.c118
-rw-r--r--kernel/trace/ring_buffer.c102
-rw-r--r--kernel/trace/ring_buffer_benchmark.c4
-rw-r--r--kernel/trace/rv/rv.c2
-rw-r--r--kernel/trace/trace.c96
-rw-r--r--kernel/trace/trace.h22
-rw-r--r--kernel/trace/trace_branch.c10
-rw-r--r--kernel/trace/trace_clock.c2
-rw-r--r--kernel/trace/trace_entries.h29
-rw-r--r--kernel/trace/trace_event_perf.c6
-rw-r--r--kernel/trace/trace_events.c2
-rw-r--r--kernel/trace/trace_events_filter.c8
-rw-r--r--kernel/trace/trace_events_hist.c11
-rw-r--r--kernel/trace/trace_events_user.c4
-rw-r--r--kernel/trace/trace_functions.c36
-rw-r--r--kernel/trace/trace_functions_graph.c272
-rw-r--r--kernel/trace/trace_hwlat.c4
-rw-r--r--kernel/trace/trace_kdb.c13
-rw-r--r--kernel/trace/trace_mmiotrace.c8
-rw-r--r--kernel/trace/trace_osnoise.c12
-rw-r--r--kernel/trace/trace_output.c5
-rw-r--r--kernel/trace/trace_preemptirq.c26
-rw-r--r--kernel/trace/trace_sched_switch.c2
-rw-r--r--kernel/trace/trace_sched_wakeup.c8
-rw-r--r--kernel/trace/trace_selftest.c1
-rw-r--r--kernel/trace/trace_syscalls.c28
-rw-r--r--kernel/trace/trace_uprobe.c12
-rw-r--r--kernel/tracepoint.c75
-rw-r--r--kernel/ucount.c2
-rw-r--r--kernel/umh.c1
-rw-r--r--kernel/watch_queue.c6
-rw-r--r--kernel/watchdog.c8
-rw-r--r--kernel/workqueue.c22
172 files changed, 7134 insertions, 4132 deletions
diff --git a/kernel/Kconfig.preempt b/kernel/Kconfig.preempt
index fe782cd77388..54ea59ff8fbe 100644
--- a/kernel/Kconfig.preempt
+++ b/kernel/Kconfig.preempt
@@ -11,12 +11,16 @@ config PREEMPT_BUILD
select PREEMPTION
select UNINLINE_SPIN_UNLOCK if !ARCH_INLINE_SPIN_UNLOCK
+config ARCH_HAS_PREEMPT_LAZY
+ bool
+
choice
prompt "Preemption Model"
default PREEMPT_NONE
config PREEMPT_NONE
bool "No Forced Preemption (Server)"
+ depends on !PREEMPT_RT
select PREEMPT_NONE_BUILD if !PREEMPT_DYNAMIC
help
This is the traditional Linux preemption model, geared towards
@@ -32,6 +36,7 @@ config PREEMPT_NONE
config PREEMPT_VOLUNTARY
bool "Voluntary Kernel Preemption (Desktop)"
depends on !ARCH_NO_PREEMPT
+ depends on !PREEMPT_RT
select PREEMPT_VOLUNTARY_BUILD if !PREEMPT_DYNAMIC
help
This option reduces the latency of the kernel by adding more
@@ -51,7 +56,7 @@ config PREEMPT_VOLUNTARY
config PREEMPT
bool "Preemptible Kernel (Low-Latency Desktop)"
depends on !ARCH_NO_PREEMPT
- select PREEMPT_BUILD
+ select PREEMPT_BUILD if !PREEMPT_DYNAMIC
help
This option reduces the latency of the kernel by making
all kernel code (that is not executing in a critical section)
@@ -67,9 +72,23 @@ config PREEMPT
embedded system with latency requirements in the milliseconds
range.
+config PREEMPT_LAZY
+ bool "Scheduler controlled preemption model"
+ depends on !ARCH_NO_PREEMPT
+ depends on ARCH_HAS_PREEMPT_LAZY
+ select PREEMPT_BUILD if !PREEMPT_DYNAMIC
+ help
+ This option provides a scheduler driven preemption model that
+ is fundamentally similar to full preemption, but is less
+ eager to preempt SCHED_NORMAL tasks in an attempt to
+ reduce lock holder preemption and recover some of the performance
+ gains seen from using Voluntary preemption.
+
+endchoice
+
config PREEMPT_RT
bool "Fully Preemptible Kernel (Real-Time)"
- depends on EXPERT && ARCH_SUPPORTS_RT
+ depends on EXPERT && ARCH_SUPPORTS_RT && !COMPILE_TEST
select PREEMPTION
help
This option turns the kernel into a real-time kernel by replacing
@@ -84,8 +103,6 @@ config PREEMPT_RT
Select this if you are building a kernel for systems which
require real-time guarantees.
-endchoice
-
config PREEMPT_COUNT
bool
@@ -95,7 +112,7 @@ config PREEMPTION
config PREEMPT_DYNAMIC
bool "Preemption behaviour defined on boot"
- depends on HAVE_PREEMPT_DYNAMIC && !PREEMPT_RT
+ depends on HAVE_PREEMPT_DYNAMIC
select JUMP_LABEL if HAVE_PREEMPT_DYNAMIC_KEY
select PREEMPT_BUILD
default y if HAVE_PREEMPT_DYNAMIC_CALL
diff --git a/kernel/audit.c b/kernel/audit.c
index 1edaa4846a47..6a95a6077953 100644
--- a/kernel/audit.c
+++ b/kernel/audit.c
@@ -123,7 +123,7 @@ static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
/* The identity of the user shutting down the audit system. */
static kuid_t audit_sig_uid = INVALID_UID;
static pid_t audit_sig_pid = -1;
-static u32 audit_sig_sid;
+static struct lsm_prop audit_sig_lsm;
/* Records can be lost in several ways:
0) [suppressed in audit_alloc]
@@ -1473,20 +1473,21 @@ static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh,
}
case AUDIT_SIGNAL_INFO:
len = 0;
- if (audit_sig_sid) {
- err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
+ if (lsmprop_is_set(&audit_sig_lsm)) {
+ err = security_lsmprop_to_secctx(&audit_sig_lsm, &ctx,
+ &len);
if (err)
return err;
}
sig_data = kmalloc(struct_size(sig_data, ctx, len), GFP_KERNEL);
if (!sig_data) {
- if (audit_sig_sid)
+ if (lsmprop_is_set(&audit_sig_lsm))
security_release_secctx(ctx, len);
return -ENOMEM;
}
sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
sig_data->pid = audit_sig_pid;
- if (audit_sig_sid) {
+ if (lsmprop_is_set(&audit_sig_lsm)) {
memcpy(sig_data->ctx, ctx, len);
security_release_secctx(ctx, len);
}
@@ -2102,8 +2103,8 @@ bool audit_string_contains_control(const char *string, size_t len)
/**
* audit_log_n_untrustedstring - log a string that may contain random characters
* @ab: audit_buffer
- * @len: length of string (not including trailing null)
* @string: string to be logged
+ * @len: length of string (not including trailing null)
*
* This code will escape a string that is passed to it if the string
* contains a control character, unprintable character, double quote mark,
@@ -2178,16 +2179,16 @@ void audit_log_key(struct audit_buffer *ab, char *key)
int audit_log_task_context(struct audit_buffer *ab)
{
+ struct lsm_prop prop;
char *ctx = NULL;
unsigned len;
int error;
- u32 sid;
- security_current_getsecid_subj(&sid);
- if (!sid)
+ security_current_getlsmprop_subj(&prop);
+ if (!lsmprop_is_set(&prop))
return 0;
- error = security_secid_to_secctx(sid, &ctx, &len);
+ error = security_lsmprop_to_secctx(&prop, &ctx, &len);
if (error) {
if (error != -EINVAL)
goto error_path;
@@ -2404,7 +2405,7 @@ int audit_signal_info(int sig, struct task_struct *t)
audit_sig_uid = auid;
else
audit_sig_uid = uid;
- security_current_getsecid_subj(&audit_sig_sid);
+ security_current_getlsmprop_subj(&audit_sig_lsm);
}
return audit_signal_info_syscall(t);
diff --git a/kernel/audit.h b/kernel/audit.h
index a60d2840559e..0211cb307d30 100644
--- a/kernel/audit.h
+++ b/kernel/audit.h
@@ -11,6 +11,7 @@
#include <linux/fs.h>
#include <linux/audit.h>
+#include <linux/security.h>
#include <linux/skbuff.h>
#include <uapi/linux/mqueue.h>
#include <linux/tty.h>
@@ -81,7 +82,7 @@ struct audit_names {
kuid_t uid;
kgid_t gid;
dev_t rdev;
- u32 osid;
+ struct lsm_prop oprop;
struct audit_cap_data fcap;
unsigned int fcap_ver;
unsigned char type; /* record type */
@@ -143,7 +144,7 @@ struct audit_context {
kuid_t target_auid;
kuid_t target_uid;
unsigned int target_sessionid;
- u32 target_sid;
+ struct lsm_prop target_ref;
char target_comm[TASK_COMM_LEN];
struct audit_tree_refs *trees, *first_trees;
@@ -160,7 +161,7 @@ struct audit_context {
kuid_t uid;
kgid_t gid;
umode_t mode;
- u32 osid;
+ struct lsm_prop oprop;
int has_perm;
uid_t perm_uid;
gid_t perm_gid;
diff --git a/kernel/auditfilter.c b/kernel/auditfilter.c
index 470041c49a44..bceb9f58a09e 100644
--- a/kernel/auditfilter.c
+++ b/kernel/auditfilter.c
@@ -1339,8 +1339,8 @@ int audit_filter(int msgtype, unsigned int listtype)
for (i = 0; i < e->rule.field_count; i++) {
struct audit_field *f = &e->rule.fields[i];
+ struct lsm_prop prop = { };
pid_t pid;
- u32 sid;
switch (f->type) {
case AUDIT_PID:
@@ -1370,9 +1370,10 @@ int audit_filter(int msgtype, unsigned int listtype)
case AUDIT_SUBJ_SEN:
case AUDIT_SUBJ_CLR:
if (f->lsm_rule) {
- security_current_getsecid_subj(&sid);
- result = security_audit_rule_match(sid,
- f->type, f->op, f->lsm_rule);
+ security_current_getlsmprop_subj(&prop);
+ result = security_audit_rule_match(
+ &prop, f->type, f->op,
+ f->lsm_rule);
}
break;
case AUDIT_EXE:
diff --git a/kernel/auditsc.c b/kernel/auditsc.c
index cd57053b4a69..91afdd0d036e 100644
--- a/kernel/auditsc.c
+++ b/kernel/auditsc.c
@@ -100,7 +100,7 @@ struct audit_aux_data_pids {
kuid_t target_auid[AUDIT_AUX_PIDS];
kuid_t target_uid[AUDIT_AUX_PIDS];
unsigned int target_sessionid[AUDIT_AUX_PIDS];
- u32 target_sid[AUDIT_AUX_PIDS];
+ struct lsm_prop target_ref[AUDIT_AUX_PIDS];
char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
int pid_count;
};
@@ -470,7 +470,7 @@ static int audit_filter_rules(struct task_struct *tsk,
{
const struct cred *cred;
int i, need_sid = 1;
- u32 sid;
+ struct lsm_prop prop = { };
unsigned int sessionid;
if (ctx && rule->prio <= ctx->prio)
@@ -674,14 +674,16 @@ static int audit_filter_rules(struct task_struct *tsk,
* fork()/copy_process() in which case
* the new @tsk creds are still a dup
* of @current's creds so we can still
- * use security_current_getsecid_subj()
+ * use
+ * security_current_getlsmprop_subj()
* here even though it always refs
* @current's creds
*/
- security_current_getsecid_subj(&sid);
+ security_current_getlsmprop_subj(&prop);
need_sid = 0;
}
- result = security_audit_rule_match(sid, f->type,
+ result = security_audit_rule_match(&prop,
+ f->type,
f->op,
f->lsm_rule);
}
@@ -697,14 +699,14 @@ static int audit_filter_rules(struct task_struct *tsk,
/* Find files that match */
if (name) {
result = security_audit_rule_match(
- name->osid,
+ &name->oprop,
f->type,
f->op,
f->lsm_rule);
} else if (ctx) {
list_for_each_entry(n, &ctx->names_list, list) {
if (security_audit_rule_match(
- n->osid,
+ &n->oprop,
f->type,
f->op,
f->lsm_rule)) {
@@ -716,7 +718,7 @@ static int audit_filter_rules(struct task_struct *tsk,
/* Find ipc objects that match */
if (!ctx || ctx->type != AUDIT_IPC)
break;
- if (security_audit_rule_match(ctx->ipc.osid,
+ if (security_audit_rule_match(&ctx->ipc.oprop,
f->type, f->op,
f->lsm_rule))
++result;
@@ -1017,7 +1019,7 @@ static void audit_reset_context(struct audit_context *ctx)
ctx->target_pid = 0;
ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
ctx->target_sessionid = 0;
- ctx->target_sid = 0;
+ lsmprop_init(&ctx->target_ref);
ctx->target_comm[0] = '\0';
unroll_tree_refs(ctx, NULL, 0);
WARN_ON(!list_empty(&ctx->killed_trees));
@@ -1091,8 +1093,9 @@ static inline void audit_free_context(struct audit_context *context)
}
static int audit_log_pid_context(struct audit_context *context, pid_t pid,
- kuid_t auid, kuid_t uid, unsigned int sessionid,
- u32 sid, char *comm)
+ kuid_t auid, kuid_t uid,
+ unsigned int sessionid, struct lsm_prop *prop,
+ char *comm)
{
struct audit_buffer *ab;
char *ctx = NULL;
@@ -1106,8 +1109,8 @@ static int audit_log_pid_context(struct audit_context *context, pid_t pid,
audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
from_kuid(&init_user_ns, auid),
from_kuid(&init_user_ns, uid), sessionid);
- if (sid) {
- if (security_secid_to_secctx(sid, &ctx, &len)) {
+ if (lsmprop_is_set(prop)) {
+ if (security_lsmprop_to_secctx(prop, &ctx, &len)) {
audit_log_format(ab, " obj=(none)");
rc = 1;
} else {
@@ -1384,19 +1387,17 @@ static void show_special(struct audit_context *context, int *call_panic)
audit_log_format(ab, " a%d=%lx", i,
context->socketcall.args[i]);
break; }
- case AUDIT_IPC: {
- u32 osid = context->ipc.osid;
-
+ case AUDIT_IPC:
audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
from_kuid(&init_user_ns, context->ipc.uid),
from_kgid(&init_user_ns, context->ipc.gid),
context->ipc.mode);
- if (osid) {
+ if (lsmprop_is_set(&context->ipc.oprop)) {
char *ctx = NULL;
u32 len;
- if (security_secid_to_secctx(osid, &ctx, &len)) {
- audit_log_format(ab, " osid=%u", osid);
+ if (security_lsmprop_to_secctx(&context->ipc.oprop,
+ &ctx, &len)) {
*call_panic = 1;
} else {
audit_log_format(ab, " obj=%s", ctx);
@@ -1416,7 +1417,7 @@ static void show_special(struct audit_context *context, int *call_panic)
context->ipc.perm_gid,
context->ipc.perm_mode);
}
- break; }
+ break;
case AUDIT_MQ_OPEN:
audit_log_format(ab,
"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
@@ -1558,13 +1559,11 @@ static void audit_log_name(struct audit_context *context, struct audit_names *n,
from_kgid(&init_user_ns, n->gid),
MAJOR(n->rdev),
MINOR(n->rdev));
- if (n->osid != 0) {
+ if (lsmprop_is_set(&n->oprop)) {
char *ctx = NULL;
u32 len;
- if (security_secid_to_secctx(
- n->osid, &ctx, &len)) {
- audit_log_format(ab, " osid=%u", n->osid);
+ if (security_lsmprop_to_secctx(&n->oprop, &ctx, &len)) {
if (call_panic)
*call_panic = 2;
} else {
@@ -1653,8 +1652,8 @@ static void audit_log_uring(struct audit_context *ctx)
audit_log_format(ab, "uring_op=%d", ctx->uring_op);
if (ctx->return_valid != AUDITSC_INVALID)
audit_log_format(ab, " success=%s exit=%ld",
- (ctx->return_valid == AUDITSC_SUCCESS ?
- "yes" : "no"),
+ str_yes_no(ctx->return_valid ==
+ AUDITSC_SUCCESS),
ctx->return_code);
audit_log_format(ab,
" items=%d"
@@ -1696,8 +1695,8 @@ static void audit_log_exit(void)
audit_log_format(ab, " per=%lx", context->personality);
if (context->return_valid != AUDITSC_INVALID)
audit_log_format(ab, " success=%s exit=%ld",
- (context->return_valid == AUDITSC_SUCCESS ?
- "yes" : "no"),
+ str_yes_no(context->return_valid ==
+ AUDITSC_SUCCESS),
context->return_code);
audit_log_format(ab,
" a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
@@ -1780,7 +1779,7 @@ static void audit_log_exit(void)
axs->target_auid[i],
axs->target_uid[i],
axs->target_sessionid[i],
- axs->target_sid[i],
+ &axs->target_ref[i],
axs->target_comm[i]))
call_panic = 1;
}
@@ -1789,7 +1788,7 @@ static void audit_log_exit(void)
audit_log_pid_context(context, context->target_pid,
context->target_auid, context->target_uid,
context->target_sessionid,
- context->target_sid, context->target_comm))
+ &context->target_ref, context->target_comm))
call_panic = 1;
if (context->pwd.dentry && context->pwd.mnt) {
@@ -2278,7 +2277,7 @@ static void audit_copy_inode(struct audit_names *name,
name->uid = inode->i_uid;
name->gid = inode->i_gid;
name->rdev = inode->i_rdev;
- security_inode_getsecid(inode, &name->osid);
+ security_inode_getlsmprop(inode, &name->oprop);
if (flags & AUDIT_INODE_NOEVAL) {
name->fcap_ver = -1;
return;
@@ -2632,7 +2631,7 @@ void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
context->ipc.gid = ipcp->gid;
context->ipc.mode = ipcp->mode;
context->ipc.has_perm = 0;
- security_ipc_getsecid(ipcp, &context->ipc.osid);
+ security_ipc_getlsmprop(ipcp, &context->ipc.oprop);
context->type = AUDIT_IPC;
}
@@ -2729,7 +2728,7 @@ void __audit_ptrace(struct task_struct *t)
context->target_auid = audit_get_loginuid(t);
context->target_uid = task_uid(t);
context->target_sessionid = audit_get_sessionid(t);
- security_task_getsecid_obj(t, &context->target_sid);
+ security_task_getlsmprop_obj(t, &context->target_ref);
memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
}
@@ -2756,7 +2755,7 @@ int audit_signal_info_syscall(struct task_struct *t)
ctx->target_auid = audit_get_loginuid(t);
ctx->target_uid = t_uid;
ctx->target_sessionid = audit_get_sessionid(t);
- security_task_getsecid_obj(t, &ctx->target_sid);
+ security_task_getlsmprop_obj(t, &ctx->target_ref);
memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
return 0;
}
@@ -2777,7 +2776,7 @@ int audit_signal_info_syscall(struct task_struct *t)
axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
axp->target_uid[axp->pid_count] = t_uid;
axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
- security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
+ security_task_getlsmprop_obj(t, &axp->target_ref[axp->pid_count]);
memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
axp->pid_count++;
diff --git a/kernel/bpf/Makefile b/kernel/bpf/Makefile
index 9b9c151b5c82..9762bdddf1de 100644
--- a/kernel/bpf/Makefile
+++ b/kernel/bpf/Makefile
@@ -16,7 +16,7 @@ obj-$(CONFIG_BPF_SYSCALL) += disasm.o mprog.o
obj-$(CONFIG_BPF_JIT) += trampoline.o
obj-$(CONFIG_BPF_SYSCALL) += btf.o memalloc.o
ifeq ($(CONFIG_MMU)$(CONFIG_64BIT),yy)
-obj-$(CONFIG_BPF_SYSCALL) += arena.o
+obj-$(CONFIG_BPF_SYSCALL) += arena.o range_tree.o
endif
obj-$(CONFIG_BPF_JIT) += dispatcher.o
ifeq ($(CONFIG_NET),y)
@@ -52,3 +52,4 @@ obj-$(CONFIG_BPF_PRELOAD) += preload/
obj-$(CONFIG_BPF_SYSCALL) += relo_core.o
obj-$(CONFIG_BPF_SYSCALL) += btf_iter.o
obj-$(CONFIG_BPF_SYSCALL) += btf_relocate.o
+obj-$(CONFIG_BPF_SYSCALL) += kmem_cache_iter.o
diff --git a/kernel/bpf/arena.c b/kernel/bpf/arena.c
index e52b3ad231b9..945a5680f6a5 100644
--- a/kernel/bpf/arena.c
+++ b/kernel/bpf/arena.c
@@ -3,9 +3,11 @@
#include <linux/bpf.h>
#include <linux/btf.h>
#include <linux/err.h>
+#include "linux/filter.h"
#include <linux/btf_ids.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
+#include "range_tree.h"
/*
* bpf_arena is a sparsely populated shared memory region between bpf program and
@@ -45,7 +47,7 @@ struct bpf_arena {
u64 user_vm_start;
u64 user_vm_end;
struct vm_struct *kern_vm;
- struct maple_tree mt;
+ struct range_tree rt;
struct list_head vma_list;
struct mutex lock;
};
@@ -98,6 +100,9 @@ static struct bpf_map *arena_map_alloc(union bpf_attr *attr)
u64 vm_range;
int err = -ENOMEM;
+ if (!bpf_jit_supports_arena())
+ return ERR_PTR(-EOPNOTSUPP);
+
if (attr->key_size || attr->value_size || attr->max_entries == 0 ||
/* BPF_F_MMAPABLE must be set */
!(attr->map_flags & BPF_F_MMAPABLE) ||
@@ -132,7 +137,8 @@ static struct bpf_map *arena_map_alloc(union bpf_attr *attr)
INIT_LIST_HEAD(&arena->vma_list);
bpf_map_init_from_attr(&arena->map, attr);
- mt_init_flags(&arena->mt, MT_FLAGS_ALLOC_RANGE);
+ range_tree_init(&arena->rt);
+ range_tree_set(&arena->rt, 0, attr->max_entries);
mutex_init(&arena->lock);
return &arena->map;
@@ -183,7 +189,7 @@ static void arena_map_free(struct bpf_map *map)
apply_to_existing_page_range(&init_mm, bpf_arena_get_kern_vm_start(arena),
KERN_VM_SZ - GUARD_SZ, existing_page_cb, NULL);
free_vm_area(arena->kern_vm);
- mtree_destroy(&arena->mt);
+ range_tree_destroy(&arena->rt);
bpf_map_area_free(arena);
}
@@ -274,20 +280,20 @@ static vm_fault_t arena_vm_fault(struct vm_fault *vmf)
/* User space requested to segfault when page is not allocated by bpf prog */
return VM_FAULT_SIGSEGV;
- ret = mtree_insert(&arena->mt, vmf->pgoff, MT_ENTRY, GFP_KERNEL);
+ ret = range_tree_clear(&arena->rt, vmf->pgoff, 1);
if (ret)
return VM_FAULT_SIGSEGV;
/* Account into memcg of the process that created bpf_arena */
ret = bpf_map_alloc_pages(map, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 1, &page);
if (ret) {
- mtree_erase(&arena->mt, vmf->pgoff);
+ range_tree_set(&arena->rt, vmf->pgoff, 1);
return VM_FAULT_SIGSEGV;
}
ret = vm_area_map_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE, &page);
if (ret) {
- mtree_erase(&arena->mt, vmf->pgoff);
+ range_tree_set(&arena->rt, vmf->pgoff, 1);
__free_page(page);
return VM_FAULT_SIGSEGV;
}
@@ -444,12 +450,16 @@ static long arena_alloc_pages(struct bpf_arena *arena, long uaddr, long page_cnt
guard(mutex)(&arena->lock);
- if (uaddr)
- ret = mtree_insert_range(&arena->mt, pgoff, pgoff + page_cnt - 1,
- MT_ENTRY, GFP_KERNEL);
- else
- ret = mtree_alloc_range(&arena->mt, &pgoff, MT_ENTRY,
- page_cnt, 0, page_cnt_max - 1, GFP_KERNEL);
+ if (uaddr) {
+ ret = is_range_tree_set(&arena->rt, pgoff, page_cnt);
+ if (ret)
+ goto out_free_pages;
+ ret = range_tree_clear(&arena->rt, pgoff, page_cnt);
+ } else {
+ ret = pgoff = range_tree_find(&arena->rt, page_cnt);
+ if (pgoff >= 0)
+ ret = range_tree_clear(&arena->rt, pgoff, page_cnt);
+ }
if (ret)
goto out_free_pages;
@@ -476,7 +486,7 @@ static long arena_alloc_pages(struct bpf_arena *arena, long uaddr, long page_cnt
kvfree(pages);
return clear_lo32(arena->user_vm_start) + uaddr32;
out:
- mtree_erase(&arena->mt, pgoff);
+ range_tree_set(&arena->rt, pgoff, page_cnt);
out_free_pages:
kvfree(pages);
return 0;
@@ -516,7 +526,7 @@ static void arena_free_pages(struct bpf_arena *arena, long uaddr, long page_cnt)
pgoff = compute_pgoff(arena, uaddr);
/* clear range */
- mtree_store_range(&arena->mt, pgoff, pgoff + page_cnt - 1, NULL, GFP_KERNEL);
+ range_tree_set(&arena->rt, pgoff, page_cnt);
if (page_cnt > 1)
/* bulk zap if multiple pages being freed */
diff --git a/kernel/bpf/arraymap.c b/kernel/bpf/arraymap.c
index 79660e3fca4c..6cdbb4c33d31 100644
--- a/kernel/bpf/arraymap.c
+++ b/kernel/bpf/arraymap.c
@@ -947,22 +947,44 @@ static void *prog_fd_array_get_ptr(struct bpf_map *map,
struct file *map_file, int fd)
{
struct bpf_prog *prog = bpf_prog_get(fd);
+ bool is_extended;
if (IS_ERR(prog))
return prog;
- if (!bpf_prog_map_compatible(map, prog)) {
+ if (prog->type == BPF_PROG_TYPE_EXT ||
+ !bpf_prog_map_compatible(map, prog)) {
bpf_prog_put(prog);
return ERR_PTR(-EINVAL);
}
+ mutex_lock(&prog->aux->ext_mutex);
+ is_extended = prog->aux->is_extended;
+ if (!is_extended)
+ prog->aux->prog_array_member_cnt++;
+ mutex_unlock(&prog->aux->ext_mutex);
+ if (is_extended) {
+ /* Extended prog can not be tail callee. It's to prevent a
+ * potential infinite loop like:
+ * tail callee prog entry -> tail callee prog subprog ->
+ * freplace prog entry --tailcall-> tail callee prog entry.
+ */
+ bpf_prog_put(prog);
+ return ERR_PTR(-EBUSY);
+ }
+
return prog;
}
static void prog_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer)
{
+ struct bpf_prog *prog = ptr;
+
+ mutex_lock(&prog->aux->ext_mutex);
+ prog->aux->prog_array_member_cnt--;
+ mutex_unlock(&prog->aux->ext_mutex);
/* bpf_prog is freed after one RCU or tasks trace grace period */
- bpf_prog_put(ptr);
+ bpf_prog_put(prog);
}
static u32 prog_fd_array_sys_lookup_elem(void *ptr)
diff --git a/kernel/bpf/bpf_cgrp_storage.c b/kernel/bpf/bpf_cgrp_storage.c
index 28efd0a3f220..20f05de92e9c 100644
--- a/kernel/bpf/bpf_cgrp_storage.c
+++ b/kernel/bpf/bpf_cgrp_storage.c
@@ -107,7 +107,7 @@ static long bpf_cgrp_storage_update_elem(struct bpf_map *map, void *key,
bpf_cgrp_storage_lock();
sdata = bpf_local_storage_update(cgroup, (struct bpf_local_storage_map *)map,
- value, map_flags, GFP_ATOMIC);
+ value, map_flags, false, GFP_ATOMIC);
bpf_cgrp_storage_unlock();
cgroup_put(cgroup);
return PTR_ERR_OR_ZERO(sdata);
@@ -181,7 +181,7 @@ BPF_CALL_5(bpf_cgrp_storage_get, struct bpf_map *, map, struct cgroup *, cgroup,
if (!percpu_ref_is_dying(&cgroup->self.refcnt) &&
(flags & BPF_LOCAL_STORAGE_GET_F_CREATE))
sdata = bpf_local_storage_update(cgroup, (struct bpf_local_storage_map *)map,
- value, BPF_NOEXIST, gfp_flags);
+ value, BPF_NOEXIST, false, gfp_flags);
unlock:
bpf_cgrp_storage_unlock();
diff --git a/kernel/bpf/bpf_inode_storage.c b/kernel/bpf/bpf_inode_storage.c
index 29da6d3838f6..a51c82dee1bd 100644
--- a/kernel/bpf/bpf_inode_storage.c
+++ b/kernel/bpf/bpf_inode_storage.c
@@ -16,7 +16,6 @@
#include <uapi/linux/btf.h>
#include <linux/bpf_lsm.h>
#include <linux/btf_ids.h>
-#include <linux/fdtable.h>
#include <linux/rcupdate_trace.h>
DEFINE_BPF_STORAGE_CACHE(inode_cache);
@@ -100,7 +99,7 @@ static long bpf_fd_inode_storage_update_elem(struct bpf_map *map, void *key,
sdata = bpf_local_storage_update(file_inode(fd_file(f)),
(struct bpf_local_storage_map *)map,
- value, map_flags, GFP_ATOMIC);
+ value, map_flags, false, GFP_ATOMIC);
return PTR_ERR_OR_ZERO(sdata);
}
@@ -154,7 +153,7 @@ BPF_CALL_5(bpf_inode_storage_get, struct bpf_map *, map, struct inode *, inode,
if (flags & BPF_LOCAL_STORAGE_GET_F_CREATE) {
sdata = bpf_local_storage_update(
inode, (struct bpf_local_storage_map *)map, value,
- BPF_NOEXIST, gfp_flags);
+ BPF_NOEXIST, false, gfp_flags);
return IS_ERR(sdata) ? (unsigned long)NULL :
(unsigned long)sdata->data;
}
diff --git a/kernel/bpf/bpf_local_storage.c b/kernel/bpf/bpf_local_storage.c
index c938dea5ddbf..7e6a0af0afc1 100644
--- a/kernel/bpf/bpf_local_storage.c
+++ b/kernel/bpf/bpf_local_storage.c
@@ -73,7 +73,7 @@ static bool selem_linked_to_map(const struct bpf_local_storage_elem *selem)
struct bpf_local_storage_elem *
bpf_selem_alloc(struct bpf_local_storage_map *smap, void *owner,
- void *value, bool charge_mem, gfp_t gfp_flags)
+ void *value, bool charge_mem, bool swap_uptrs, gfp_t gfp_flags)
{
struct bpf_local_storage_elem *selem;
@@ -99,9 +99,12 @@ bpf_selem_alloc(struct bpf_local_storage_map *smap, void *owner,
}
if (selem) {
- if (value)
+ if (value) {
+ /* No need to call check_and_init_map_value as memory is zero init */
copy_map_value(&smap->map, SDATA(selem)->data, value);
- /* No need to call check_and_init_map_value as memory is zero init */
+ if (swap_uptrs)
+ bpf_obj_swap_uptrs(smap->map.record, SDATA(selem)->data, value);
+ }
return selem;
}
@@ -209,8 +212,12 @@ static void __bpf_selem_free(struct bpf_local_storage_elem *selem,
static void bpf_selem_free_rcu(struct rcu_head *rcu)
{
struct bpf_local_storage_elem *selem;
+ struct bpf_local_storage_map *smap;
selem = container_of(rcu, struct bpf_local_storage_elem, rcu);
+ /* The bpf_local_storage_map_free will wait for rcu_barrier */
+ smap = rcu_dereference_check(SDATA(selem)->smap, 1);
+ bpf_obj_free_fields(smap->map.record, SDATA(selem)->data);
bpf_mem_cache_raw_free(selem);
}
@@ -226,16 +233,25 @@ void bpf_selem_free(struct bpf_local_storage_elem *selem,
struct bpf_local_storage_map *smap,
bool reuse_now)
{
- bpf_obj_free_fields(smap->map.record, SDATA(selem)->data);
-
if (!smap->bpf_ma) {
+ /* Only task storage has uptrs and task storage
+ * has moved to bpf_mem_alloc. Meaning smap->bpf_ma == true
+ * for task storage, so this bpf_obj_free_fields() won't unpin
+ * any uptr.
+ */
+ bpf_obj_free_fields(smap->map.record, SDATA(selem)->data);
__bpf_selem_free(selem, reuse_now);
return;
}
- if (!reuse_now) {
- call_rcu_tasks_trace(&selem->rcu, bpf_selem_free_trace_rcu);
- } else {
+ if (reuse_now) {
+ /* reuse_now == true only happens when the storage owner
+ * (e.g. task_struct) is being destructed or the map itself
+ * is being destructed (ie map_free). In both cases,
+ * no bpf prog can have a hold on the selem. It is
+ * safe to unpin the uptrs and free the selem now.
+ */
+ bpf_obj_free_fields(smap->map.record, SDATA(selem)->data);
/* Instead of using the vanilla call_rcu(),
* bpf_mem_cache_free will be able to reuse selem
* immediately.
@@ -243,6 +259,26 @@ void bpf_selem_free(struct bpf_local_storage_elem *selem,
migrate_disable();
bpf_mem_cache_free(&smap->selem_ma, selem);
migrate_enable();
+ return;
+ }
+
+ call_rcu_tasks_trace(&selem->rcu, bpf_selem_free_trace_rcu);
+}
+
+static void bpf_selem_free_list(struct hlist_head *list, bool reuse_now)
+{
+ struct bpf_local_storage_elem *selem;
+ struct bpf_local_storage_map *smap;
+ struct hlist_node *n;
+
+ /* The "_safe" iteration is needed.
+ * The loop is not removing the selem from the list
+ * but bpf_selem_free will use the selem->rcu_head
+ * which is union-ized with the selem->free_node.
+ */
+ hlist_for_each_entry_safe(selem, n, list, free_node) {
+ smap = rcu_dereference_check(SDATA(selem)->smap, bpf_rcu_lock_held());
+ bpf_selem_free(selem, smap, reuse_now);
}
}
@@ -252,7 +288,7 @@ void bpf_selem_free(struct bpf_local_storage_elem *selem,
*/
static bool bpf_selem_unlink_storage_nolock(struct bpf_local_storage *local_storage,
struct bpf_local_storage_elem *selem,
- bool uncharge_mem, bool reuse_now)
+ bool uncharge_mem, struct hlist_head *free_selem_list)
{
struct bpf_local_storage_map *smap;
bool free_local_storage;
@@ -296,7 +332,7 @@ static bool bpf_selem_unlink_storage_nolock(struct bpf_local_storage *local_stor
SDATA(selem))
RCU_INIT_POINTER(local_storage->cache[smap->cache_idx], NULL);
- bpf_selem_free(selem, smap, reuse_now);
+ hlist_add_head(&selem->free_node, free_selem_list);
if (rcu_access_pointer(local_storage->smap) == smap)
RCU_INIT_POINTER(local_storage->smap, NULL);
@@ -345,6 +381,7 @@ static void bpf_selem_unlink_storage(struct bpf_local_storage_elem *selem,
struct bpf_local_storage_map *storage_smap;
struct bpf_local_storage *local_storage;
bool bpf_ma, free_local_storage = false;
+ HLIST_HEAD(selem_free_list);
unsigned long flags;
if (unlikely(!selem_linked_to_storage_lockless(selem)))
@@ -360,9 +397,11 @@ static void bpf_selem_unlink_storage(struct bpf_local_storage_elem *selem,
raw_spin_lock_irqsave(&local_storage->lock, flags);
if (likely(selem_linked_to_storage(selem)))
free_local_storage = bpf_selem_unlink_storage_nolock(
- local_storage, selem, true, reuse_now);
+ local_storage, selem, true, &selem_free_list);
raw_spin_unlock_irqrestore(&local_storage->lock, flags);
+ bpf_selem_free_list(&selem_free_list, reuse_now);
+
if (free_local_storage)
bpf_local_storage_free(local_storage, storage_smap, bpf_ma, reuse_now);
}
@@ -524,11 +563,12 @@ uncharge:
*/
struct bpf_local_storage_data *
bpf_local_storage_update(void *owner, struct bpf_local_storage_map *smap,
- void *value, u64 map_flags, gfp_t gfp_flags)
+ void *value, u64 map_flags, bool swap_uptrs, gfp_t gfp_flags)
{
struct bpf_local_storage_data *old_sdata = NULL;
struct bpf_local_storage_elem *alloc_selem, *selem = NULL;
struct bpf_local_storage *local_storage;
+ HLIST_HEAD(old_selem_free_list);
unsigned long flags;
int err;
@@ -550,7 +590,7 @@ bpf_local_storage_update(void *owner, struct bpf_local_storage_map *smap,
if (err)
return ERR_PTR(err);
- selem = bpf_selem_alloc(smap, owner, value, true, gfp_flags);
+ selem = bpf_selem_alloc(smap, owner, value, true, swap_uptrs, gfp_flags);
if (!selem)
return ERR_PTR(-ENOMEM);
@@ -584,7 +624,7 @@ bpf_local_storage_update(void *owner, struct bpf_local_storage_map *smap,
/* A lookup has just been done before and concluded a new selem is
* needed. The chance of an unnecessary alloc is unlikely.
*/
- alloc_selem = selem = bpf_selem_alloc(smap, owner, value, true, gfp_flags);
+ alloc_selem = selem = bpf_selem_alloc(smap, owner, value, true, swap_uptrs, gfp_flags);
if (!alloc_selem)
return ERR_PTR(-ENOMEM);
@@ -624,11 +664,12 @@ bpf_local_storage_update(void *owner, struct bpf_local_storage_map *smap,
if (old_sdata) {
bpf_selem_unlink_map(SELEM(old_sdata));
bpf_selem_unlink_storage_nolock(local_storage, SELEM(old_sdata),
- true, false);
+ true, &old_selem_free_list);
}
unlock:
raw_spin_unlock_irqrestore(&local_storage->lock, flags);
+ bpf_selem_free_list(&old_selem_free_list, false);
if (alloc_selem) {
mem_uncharge(smap, owner, smap->elem_size);
bpf_selem_free(alloc_selem, smap, true);
@@ -706,6 +747,7 @@ void bpf_local_storage_destroy(struct bpf_local_storage *local_storage)
struct bpf_local_storage_map *storage_smap;
struct bpf_local_storage_elem *selem;
bool bpf_ma, free_storage = false;
+ HLIST_HEAD(free_selem_list);
struct hlist_node *n;
unsigned long flags;
@@ -734,10 +776,12 @@ void bpf_local_storage_destroy(struct bpf_local_storage *local_storage)
* of the loop will set the free_cgroup_storage to true.
*/
free_storage = bpf_selem_unlink_storage_nolock(
- local_storage, selem, true, true);
+ local_storage, selem, true, &free_selem_list);
}
raw_spin_unlock_irqrestore(&local_storage->lock, flags);
+ bpf_selem_free_list(&free_selem_list, true);
+
if (free_storage)
bpf_local_storage_free(local_storage, storage_smap, bpf_ma, true);
}
@@ -883,6 +927,9 @@ void bpf_local_storage_map_free(struct bpf_map *map,
synchronize_rcu();
if (smap->bpf_ma) {
+ rcu_barrier_tasks_trace();
+ if (!rcu_trace_implies_rcu_gp())
+ rcu_barrier();
bpf_mem_alloc_destroy(&smap->selem_ma);
bpf_mem_alloc_destroy(&smap->storage_ma);
}
diff --git a/kernel/bpf/bpf_struct_ops.c b/kernel/bpf/bpf_struct_ops.c
index fda3dd2ee984..606efe32485a 100644
--- a/kernel/bpf/bpf_struct_ops.c
+++ b/kernel/bpf/bpf_struct_ops.c
@@ -23,7 +23,6 @@ struct bpf_struct_ops_value {
struct bpf_struct_ops_map {
struct bpf_map map;
- struct rcu_head rcu;
const struct bpf_struct_ops_desc *st_ops_desc;
/* protect map_update */
struct mutex lock;
@@ -32,7 +31,9 @@ struct bpf_struct_ops_map {
* (in kvalue.data).
*/
struct bpf_link **links;
- u32 links_cnt;
+ /* ksyms for bpf trampolines */
+ struct bpf_ksym **ksyms;
+ u32 funcs_cnt;
u32 image_pages_cnt;
/* image_pages is an array of pages that has all the trampolines
* that stores the func args before calling the bpf_prog.
@@ -481,11 +482,11 @@ static void bpf_struct_ops_map_put_progs(struct bpf_struct_ops_map *st_map)
{
u32 i;
- for (i = 0; i < st_map->links_cnt; i++) {
- if (st_map->links[i]) {
- bpf_link_put(st_map->links[i]);
- st_map->links[i] = NULL;
- }
+ for (i = 0; i < st_map->funcs_cnt; i++) {
+ if (!st_map->links[i])
+ break;
+ bpf_link_put(st_map->links[i]);
+ st_map->links[i] = NULL;
}
}
@@ -586,6 +587,49 @@ int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
return 0;
}
+static void bpf_struct_ops_ksym_init(const char *tname, const char *mname,
+ void *image, unsigned int size,
+ struct bpf_ksym *ksym)
+{
+ snprintf(ksym->name, KSYM_NAME_LEN, "bpf__%s_%s", tname, mname);
+ INIT_LIST_HEAD_RCU(&ksym->lnode);
+ bpf_image_ksym_init(image, size, ksym);
+}
+
+static void bpf_struct_ops_map_add_ksyms(struct bpf_struct_ops_map *st_map)
+{
+ u32 i;
+
+ for (i = 0; i < st_map->funcs_cnt; i++) {
+ if (!st_map->ksyms[i])
+ break;
+ bpf_image_ksym_add(st_map->ksyms[i]);
+ }
+}
+
+static void bpf_struct_ops_map_del_ksyms(struct bpf_struct_ops_map *st_map)
+{
+ u32 i;
+
+ for (i = 0; i < st_map->funcs_cnt; i++) {
+ if (!st_map->ksyms[i])
+ break;
+ bpf_image_ksym_del(st_map->ksyms[i]);
+ }
+}
+
+static void bpf_struct_ops_map_free_ksyms(struct bpf_struct_ops_map *st_map)
+{
+ u32 i;
+
+ for (i = 0; i < st_map->funcs_cnt; i++) {
+ if (!st_map->ksyms[i])
+ break;
+ kfree(st_map->ksyms[i]);
+ st_map->ksyms[i] = NULL;
+ }
+}
+
static long bpf_struct_ops_map_update_elem(struct bpf_map *map, void *key,
void *value, u64 flags)
{
@@ -601,6 +645,9 @@ static long bpf_struct_ops_map_update_elem(struct bpf_map *map, void *key,
int prog_fd, err;
u32 i, trampoline_start, image_off = 0;
void *cur_image = NULL, *image = NULL;
+ struct bpf_link **plink;
+ struct bpf_ksym **pksym;
+ const char *tname, *mname;
if (flags)
return -EINVAL;
@@ -639,14 +686,19 @@ static long bpf_struct_ops_map_update_elem(struct bpf_map *map, void *key,
udata = &uvalue->data;
kdata = &kvalue->data;
+ plink = st_map->links;
+ pksym = st_map->ksyms;
+ tname = btf_name_by_offset(st_map->btf, t->name_off);
module_type = btf_type_by_id(btf_vmlinux, st_ops_ids[IDX_MODULE_ID]);
for_each_member(i, t, member) {
const struct btf_type *mtype, *ptype;
struct bpf_prog *prog;
struct bpf_tramp_link *link;
+ struct bpf_ksym *ksym;
u32 moff;
moff = __btf_member_bit_offset(t, member) / 8;
+ mname = btf_name_by_offset(st_map->btf, member->name_off);
ptype = btf_type_resolve_ptr(st_map->btf, member->type, NULL);
if (ptype == module_type) {
if (*(void **)(udata + moff))
@@ -714,7 +766,14 @@ static long bpf_struct_ops_map_update_elem(struct bpf_map *map, void *key,
}
bpf_link_init(&link->link, BPF_LINK_TYPE_STRUCT_OPS,
&bpf_struct_ops_link_lops, prog);
- st_map->links[i] = &link->link;
+ *plink++ = &link->link;
+
+ ksym = kzalloc(sizeof(*ksym), GFP_USER);
+ if (!ksym) {
+ err = -ENOMEM;
+ goto reset_unlock;
+ }
+ *pksym++ = ksym;
trampoline_start = image_off;
err = bpf_struct_ops_prepare_trampoline(tlinks, link,
@@ -735,6 +794,12 @@ static long bpf_struct_ops_map_update_elem(struct bpf_map *map, void *key,
/* put prog_id to udata */
*(unsigned long *)(udata + moff) = prog->aux->id;
+
+ /* init ksym for this trampoline */
+ bpf_struct_ops_ksym_init(tname, mname,
+ image + trampoline_start,
+ image_off - trampoline_start,
+ ksym);
}
if (st_ops->validate) {
@@ -783,6 +848,7 @@ static long bpf_struct_ops_map_update_elem(struct bpf_map *map, void *key,
*/
reset_unlock:
+ bpf_struct_ops_map_free_ksyms(st_map);
bpf_struct_ops_map_free_image(st_map);
bpf_struct_ops_map_put_progs(st_map);
memset(uvalue, 0, map->value_size);
@@ -790,6 +856,8 @@ reset_unlock:
unlock:
kfree(tlinks);
mutex_unlock(&st_map->lock);
+ if (!err)
+ bpf_struct_ops_map_add_ksyms(st_map);
return err;
}
@@ -849,7 +917,10 @@ static void __bpf_struct_ops_map_free(struct bpf_map *map)
if (st_map->links)
bpf_struct_ops_map_put_progs(st_map);
+ if (st_map->ksyms)
+ bpf_struct_ops_map_free_ksyms(st_map);
bpf_map_area_free(st_map->links);
+ bpf_map_area_free(st_map->ksyms);
bpf_struct_ops_map_free_image(st_map);
bpf_map_area_free(st_map->uvalue);
bpf_map_area_free(st_map);
@@ -866,6 +937,8 @@ static void bpf_struct_ops_map_free(struct bpf_map *map)
if (btf_is_module(st_map->btf))
module_put(st_map->st_ops_desc->st_ops->owner);
+ bpf_struct_ops_map_del_ksyms(st_map);
+
/* The struct_ops's function may switch to another struct_ops.
*
* For example, bpf_tcp_cc_x->init() may switch to
@@ -895,6 +968,19 @@ static int bpf_struct_ops_map_alloc_check(union bpf_attr *attr)
return 0;
}
+static u32 count_func_ptrs(const struct btf *btf, const struct btf_type *t)
+{
+ int i;
+ u32 count;
+ const struct btf_member *member;
+
+ count = 0;
+ for_each_member(i, t, member)
+ if (btf_type_resolve_func_ptr(btf, member->type, NULL))
+ count++;
+ return count;
+}
+
static struct bpf_map *bpf_struct_ops_map_alloc(union bpf_attr *attr)
{
const struct bpf_struct_ops_desc *st_ops_desc;
@@ -961,11 +1047,15 @@ static struct bpf_map *bpf_struct_ops_map_alloc(union bpf_attr *attr)
map = &st_map->map;
st_map->uvalue = bpf_map_area_alloc(vt->size, NUMA_NO_NODE);
- st_map->links_cnt = btf_type_vlen(t);
+ st_map->funcs_cnt = count_func_ptrs(btf, t);
st_map->links =
- bpf_map_area_alloc(st_map->links_cnt * sizeof(struct bpf_links *),
+ bpf_map_area_alloc(st_map->funcs_cnt * sizeof(struct bpf_link *),
+ NUMA_NO_NODE);
+
+ st_map->ksyms =
+ bpf_map_area_alloc(st_map->funcs_cnt * sizeof(struct bpf_ksym *),
NUMA_NO_NODE);
- if (!st_map->uvalue || !st_map->links) {
+ if (!st_map->uvalue || !st_map->links || !st_map->ksyms) {
ret = -ENOMEM;
goto errout_free;
}
@@ -994,7 +1084,8 @@ static u64 bpf_struct_ops_map_mem_usage(const struct bpf_map *map)
usage = sizeof(*st_map) +
vt->size - sizeof(struct bpf_struct_ops_value);
usage += vt->size;
- usage += btf_type_vlen(vt) * sizeof(struct bpf_links *);
+ usage += st_map->funcs_cnt * sizeof(struct bpf_link *);
+ usage += st_map->funcs_cnt * sizeof(struct bpf_ksym *);
usage += PAGE_SIZE;
return usage;
}
diff --git a/kernel/bpf/bpf_task_storage.c b/kernel/bpf/bpf_task_storage.c
index adf6dfe0ba68..bf7fa15fdcc6 100644
--- a/kernel/bpf/bpf_task_storage.c
+++ b/kernel/bpf/bpf_task_storage.c
@@ -16,7 +16,6 @@
#include <linux/filter.h>
#include <uapi/linux/btf.h>
#include <linux/btf_ids.h>
-#include <linux/fdtable.h>
#include <linux/rcupdate_trace.h>
DEFINE_BPF_STORAGE_CACHE(task_cache);
@@ -129,6 +128,9 @@ static long bpf_pid_task_storage_update_elem(struct bpf_map *map, void *key,
struct pid *pid;
int fd, err;
+ if ((map_flags & BPF_F_LOCK) && btf_record_has_field(map->record, BPF_UPTR))
+ return -EOPNOTSUPP;
+
fd = *(int *)key;
pid = pidfd_get_pid(fd, &f_flags);
if (IS_ERR(pid))
@@ -147,7 +149,7 @@ static long bpf_pid_task_storage_update_elem(struct bpf_map *map, void *key,
bpf_task_storage_lock();
sdata = bpf_local_storage_update(
task, (struct bpf_local_storage_map *)map, value, map_flags,
- GFP_ATOMIC);
+ true, GFP_ATOMIC);
bpf_task_storage_unlock();
err = PTR_ERR_OR_ZERO(sdata);
@@ -219,7 +221,7 @@ static void *__bpf_task_storage_get(struct bpf_map *map,
(flags & BPF_LOCAL_STORAGE_GET_F_CREATE) && nobusy) {
sdata = bpf_local_storage_update(
task, (struct bpf_local_storage_map *)map, value,
- BPF_NOEXIST, gfp_flags);
+ BPF_NOEXIST, false, gfp_flags);
return IS_ERR(sdata) ? NULL : sdata->data;
}
diff --git a/kernel/bpf/btf.c b/kernel/bpf/btf.c
index 5cd1c7a23848..e7a59e6462a9 100644
--- a/kernel/bpf/btf.c
+++ b/kernel/bpf/btf.c
@@ -2808,7 +2808,7 @@ static void btf_ref_type_log(struct btf_verifier_env *env,
btf_verifier_log(env, "type_id=%u", t->type);
}
-static struct btf_kind_operations modifier_ops = {
+static const struct btf_kind_operations modifier_ops = {
.check_meta = btf_ref_type_check_meta,
.resolve = btf_modifier_resolve,
.check_member = btf_modifier_check_member,
@@ -2817,7 +2817,7 @@ static struct btf_kind_operations modifier_ops = {
.show = btf_modifier_show,
};
-static struct btf_kind_operations ptr_ops = {
+static const struct btf_kind_operations ptr_ops = {
.check_meta = btf_ref_type_check_meta,
.resolve = btf_ptr_resolve,
.check_member = btf_ptr_check_member,
@@ -2858,7 +2858,7 @@ static void btf_fwd_type_log(struct btf_verifier_env *env,
btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
}
-static struct btf_kind_operations fwd_ops = {
+static const struct btf_kind_operations fwd_ops = {
.check_meta = btf_fwd_check_meta,
.resolve = btf_df_resolve,
.check_member = btf_df_check_member,
@@ -3109,7 +3109,7 @@ static void btf_array_show(const struct btf *btf, const struct btf_type *t,
__btf_array_show(btf, t, type_id, data, bits_offset, show);
}
-static struct btf_kind_operations array_ops = {
+static const struct btf_kind_operations array_ops = {
.check_meta = btf_array_check_meta,
.resolve = btf_array_resolve,
.check_member = btf_array_check_member,
@@ -3334,7 +3334,7 @@ static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
}
static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
- u32 off, int sz, struct btf_field_info *info)
+ u32 off, int sz, struct btf_field_info *info, u32 field_mask)
{
enum btf_field_type type;
u32 res_id;
@@ -3358,9 +3358,14 @@ static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
type = BPF_KPTR_REF;
else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off)))
type = BPF_KPTR_PERCPU;
+ else if (!strcmp("uptr", __btf_name_by_offset(btf, t->name_off)))
+ type = BPF_UPTR;
else
return -EINVAL;
+ if (!(type & field_mask))
+ return BTF_FIELD_IGNORE;
+
/* Get the base type */
t = btf_type_skip_modifiers(btf, t->type, &res_id);
/* Only pointer to struct is allowed */
@@ -3502,7 +3507,7 @@ static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_
field_mask_test_name(BPF_REFCOUNT, "bpf_refcount");
/* Only return BPF_KPTR when all other types with matchable names fail */
- if (field_mask & BPF_KPTR && !__btf_type_is_struct(var_type)) {
+ if (field_mask & (BPF_KPTR | BPF_UPTR) && !__btf_type_is_struct(var_type)) {
type = BPF_KPTR_REF;
goto end;
}
@@ -3535,6 +3540,7 @@ static int btf_repeat_fields(struct btf_field_info *info, int info_cnt,
case BPF_KPTR_UNREF:
case BPF_KPTR_REF:
case BPF_KPTR_PERCPU:
+ case BPF_UPTR:
case BPF_LIST_HEAD:
case BPF_RB_ROOT:
break;
@@ -3667,8 +3673,9 @@ static int btf_find_field_one(const struct btf *btf,
case BPF_KPTR_UNREF:
case BPF_KPTR_REF:
case BPF_KPTR_PERCPU:
+ case BPF_UPTR:
ret = btf_find_kptr(btf, var_type, off, sz,
- info_cnt ? &info[0] : &tmp);
+ info_cnt ? &info[0] : &tmp, field_mask);
if (ret < 0)
return ret;
break;
@@ -3991,6 +3998,7 @@ struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type
case BPF_KPTR_UNREF:
case BPF_KPTR_REF:
case BPF_KPTR_PERCPU:
+ case BPF_UPTR:
ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
if (ret < 0)
goto end;
@@ -4050,12 +4058,28 @@ int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
* Hence we only need to ensure that bpf_{list_head,rb_root} ownership
* does not form cycles.
*/
- if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_GRAPH_ROOT))
+ if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & (BPF_GRAPH_ROOT | BPF_UPTR)))
return 0;
for (i = 0; i < rec->cnt; i++) {
struct btf_struct_meta *meta;
+ const struct btf_type *t;
u32 btf_id;
+ if (rec->fields[i].type == BPF_UPTR) {
+ /* The uptr only supports pinning one page and cannot
+ * point to a kernel struct
+ */
+ if (btf_is_kernel(rec->fields[i].kptr.btf))
+ return -EINVAL;
+ t = btf_type_by_id(rec->fields[i].kptr.btf,
+ rec->fields[i].kptr.btf_id);
+ if (!t->size)
+ return -EINVAL;
+ if (t->size > PAGE_SIZE)
+ return -E2BIG;
+ continue;
+ }
+
if (!(rec->fields[i].type & BPF_GRAPH_ROOT))
continue;
btf_id = rec->fields[i].graph_root.value_btf_id;
@@ -4191,7 +4215,7 @@ static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
__btf_struct_show(btf, t, type_id, data, bits_offset, show);
}
-static struct btf_kind_operations struct_ops = {
+static const struct btf_kind_operations struct_ops = {
.check_meta = btf_struct_check_meta,
.resolve = btf_struct_resolve,
.check_member = btf_struct_check_member,
@@ -4359,7 +4383,7 @@ static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
btf_show_end_type(show);
}
-static struct btf_kind_operations enum_ops = {
+static const struct btf_kind_operations enum_ops = {
.check_meta = btf_enum_check_meta,
.resolve = btf_df_resolve,
.check_member = btf_enum_check_member,
@@ -4462,7 +4486,7 @@ static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
btf_show_end_type(show);
}
-static struct btf_kind_operations enum64_ops = {
+static const struct btf_kind_operations enum64_ops = {
.check_meta = btf_enum64_check_meta,
.resolve = btf_df_resolve,
.check_member = btf_enum_check_member,
@@ -4540,7 +4564,7 @@ done:
btf_verifier_log(env, ")");
}
-static struct btf_kind_operations func_proto_ops = {
+static const struct btf_kind_operations func_proto_ops = {
.check_meta = btf_func_proto_check_meta,
.resolve = btf_df_resolve,
/*
@@ -4598,7 +4622,7 @@ static int btf_func_resolve(struct btf_verifier_env *env,
return 0;
}
-static struct btf_kind_operations func_ops = {
+static const struct btf_kind_operations func_ops = {
.check_meta = btf_func_check_meta,
.resolve = btf_func_resolve,
.check_member = btf_df_check_member,
@@ -5566,7 +5590,7 @@ btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
goto free_aof;
}
- ret = btf_find_kptr(btf, t, 0, 0, &tmp);
+ ret = btf_find_kptr(btf, t, 0, 0, &tmp, BPF_KPTR);
if (ret != BTF_FIELD_FOUND)
continue;
@@ -6564,7 +6588,10 @@ bool btf_ctx_access(int off, int size, enum bpf_access_type type,
if (prog_args_trusted(prog))
info->reg_type |= PTR_TRUSTED;
- if (btf_param_match_suffix(btf, &args[arg], "__nullable"))
+ /* Raw tracepoint arguments always get marked as maybe NULL */
+ if (bpf_prog_is_raw_tp(prog))
+ info->reg_type |= PTR_MAYBE_NULL;
+ else if (btf_param_match_suffix(btf, &args[arg], "__nullable"))
info->reg_type |= PTR_MAYBE_NULL;
if (tgt_prog) {
diff --git a/kernel/bpf/cgroup.c b/kernel/bpf/cgroup.c
index 025d7e2214ae..46e5db65dbc8 100644
--- a/kernel/bpf/cgroup.c
+++ b/kernel/bpf/cgroup.c
@@ -1708,7 +1708,7 @@ const struct bpf_verifier_ops cg_dev_verifier_ops = {
* returned value != 1 during execution. In all other cases 0 is returned.
*/
int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head,
- struct ctl_table *table, int write,
+ const struct ctl_table *table, int write,
char **buf, size_t *pcount, loff_t *ppos,
enum cgroup_bpf_attach_type atype)
{
diff --git a/kernel/bpf/core.c b/kernel/bpf/core.c
index 5e77c58e0601..a2327c4fdc8b 100644
--- a/kernel/bpf/core.c
+++ b/kernel/bpf/core.c
@@ -21,7 +21,7 @@
#include <linux/filter.h>
#include <linux/skbuff.h>
#include <linux/vmalloc.h>
-#include <linux/random.h>
+#include <linux/prandom.h>
#include <linux/bpf.h>
#include <linux/btf.h>
#include <linux/objtool.h>
@@ -131,6 +131,7 @@ struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flag
INIT_LIST_HEAD_RCU(&fp->aux->ksym_prefix.lnode);
#endif
mutex_init(&fp->aux->used_maps_mutex);
+ mutex_init(&fp->aux->ext_mutex);
mutex_init(&fp->aux->dst_mutex);
return fp;
@@ -3044,6 +3045,11 @@ bool __weak bpf_jit_supports_exceptions(void)
return false;
}
+bool __weak bpf_jit_supports_private_stack(void)
+{
+ return false;
+}
+
void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
{
}
diff --git a/kernel/bpf/dispatcher.c b/kernel/bpf/dispatcher.c
index 70fb82bf1637..b77db7413f8c 100644
--- a/kernel/bpf/dispatcher.c
+++ b/kernel/bpf/dispatcher.c
@@ -154,7 +154,8 @@ void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
d->image = NULL;
goto out;
}
- bpf_image_ksym_add(d->image, PAGE_SIZE, &d->ksym);
+ bpf_image_ksym_init(d->image, PAGE_SIZE, &d->ksym);
+ bpf_image_ksym_add(&d->ksym);
}
prev_num_progs = d->num_progs;
diff --git a/kernel/bpf/hashtab.c b/kernel/bpf/hashtab.c
index b14b87463ee0..3ec941a0ea41 100644
--- a/kernel/bpf/hashtab.c
+++ b/kernel/bpf/hashtab.c
@@ -896,9 +896,12 @@ find_first_elem:
static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
{
check_and_free_fields(htab, l);
+
+ migrate_disable();
if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr);
bpf_mem_cache_free(&htab->ma, l);
+ migrate_enable();
}
static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
@@ -948,7 +951,7 @@ static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
if (htab_is_prealloc(htab)) {
bpf_map_dec_elem_count(&htab->map);
check_and_free_fields(htab, l);
- __pcpu_freelist_push(&htab->freelist, &l->fnode);
+ pcpu_freelist_push(&htab->freelist, &l->fnode);
} else {
dec_elem_count(htab);
htab_elem_free(htab, l);
@@ -1018,7 +1021,6 @@ static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
*/
pl_new = this_cpu_ptr(htab->extra_elems);
l_new = *pl_new;
- htab_put_fd_value(htab, old_elem);
*pl_new = old_elem;
} else {
struct pcpu_freelist_node *l;
@@ -1105,6 +1107,7 @@ static long htab_map_update_elem(struct bpf_map *map, void *key, void *value,
struct htab_elem *l_new = NULL, *l_old;
struct hlist_nulls_head *head;
unsigned long flags;
+ void *old_map_ptr;
struct bucket *b;
u32 key_size, hash;
int ret;
@@ -1183,12 +1186,27 @@ static long htab_map_update_elem(struct bpf_map *map, void *key, void *value,
hlist_nulls_add_head_rcu(&l_new->hash_node, head);
if (l_old) {
hlist_nulls_del_rcu(&l_old->hash_node);
+
+ /* l_old has already been stashed in htab->extra_elems, free
+ * its special fields before it is available for reuse. Also
+ * save the old map pointer in htab of maps before unlock
+ * and release it after unlock.
+ */
+ old_map_ptr = NULL;
+ if (htab_is_prealloc(htab)) {
+ if (map->ops->map_fd_put_ptr)
+ old_map_ptr = fd_htab_map_get_ptr(map, l_old);
+ check_and_free_fields(htab, l_old);
+ }
+ }
+ htab_unlock_bucket(htab, b, hash, flags);
+ if (l_old) {
+ if (old_map_ptr)
+ map->ops->map_fd_put_ptr(map, old_map_ptr, true);
if (!htab_is_prealloc(htab))
free_htab_elem(htab, l_old);
- else
- check_and_free_fields(htab, l_old);
}
- ret = 0;
+ return 0;
err:
htab_unlock_bucket(htab, b, hash, flags);
return ret;
@@ -1432,15 +1450,15 @@ static long htab_map_delete_elem(struct bpf_map *map, void *key)
return ret;
l = lookup_elem_raw(head, hash, key, key_size);
-
- if (l) {
+ if (l)
hlist_nulls_del_rcu(&l->hash_node);
- free_htab_elem(htab, l);
- } else {
+ else
ret = -ENOENT;
- }
htab_unlock_bucket(htab, b, hash, flags);
+
+ if (l)
+ free_htab_elem(htab, l);
return ret;
}
@@ -1853,13 +1871,14 @@ again_nocopy:
* may cause deadlock. See comments in function
* prealloc_lru_pop(). Let us do bpf_lru_push_free()
* after releasing the bucket lock.
+ *
+ * For htab of maps, htab_put_fd_value() in
+ * free_htab_elem() may acquire a spinlock with bucket
+ * lock being held and it violates the lock rule, so
+ * invoke free_htab_elem() after unlock as well.
*/
- if (is_lru_map) {
- l->batch_flink = node_to_free;
- node_to_free = l;
- } else {
- free_htab_elem(htab, l);
- }
+ l->batch_flink = node_to_free;
+ node_to_free = l;
}
dst_key += key_size;
dst_val += value_size;
@@ -1871,7 +1890,10 @@ again_nocopy:
while (node_to_free) {
l = node_to_free;
node_to_free = node_to_free->batch_flink;
- htab_lru_push_free(htab, l);
+ if (is_lru_map)
+ htab_lru_push_free(htab, l);
+ else
+ free_htab_elem(htab, l);
}
next_batch:
diff --git a/kernel/bpf/helpers.c b/kernel/bpf/helpers.c
index 3d45ebe8afb4..751c150f9e1c 100644
--- a/kernel/bpf/helpers.c
+++ b/kernel/bpf/helpers.c
@@ -2522,6 +2522,25 @@ __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
}
/**
+ * bpf_task_from_vpid - Find a struct task_struct from its vpid by looking it up
+ * in the pid namespace of the current task. If a task is returned, it must
+ * either be stored in a map, or released with bpf_task_release().
+ * @vpid: The vpid of the task being looked up.
+ */
+__bpf_kfunc struct task_struct *bpf_task_from_vpid(s32 vpid)
+{
+ struct task_struct *p;
+
+ rcu_read_lock();
+ p = find_task_by_vpid(vpid);
+ if (p)
+ p = bpf_task_acquire(p);
+ rcu_read_unlock();
+
+ return p;
+}
+
+/**
* bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
* @p: The dynptr whose data slice to retrieve
* @offset: Offset into the dynptr
@@ -3068,7 +3087,9 @@ BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
#endif
BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
+BTF_ID_FLAGS(func, bpf_task_from_vpid, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_throw)
+BTF_ID_FLAGS(func, bpf_send_signal_task, KF_TRUSTED_ARGS)
BTF_KFUNCS_END(generic_btf_ids)
static const struct btf_kfunc_id_set generic_kfunc_set = {
@@ -3086,8 +3107,8 @@ BTF_ID(func, bpf_cgroup_release_dtor)
#endif
BTF_KFUNCS_START(common_btf_ids)
-BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx)
-BTF_ID_FLAGS(func, bpf_rdonly_cast)
+BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx, KF_FASTCALL)
+BTF_ID_FLAGS(func, bpf_rdonly_cast, KF_FASTCALL)
BTF_ID_FLAGS(func, bpf_rcu_read_lock)
BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
@@ -3124,6 +3145,10 @@ BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW)
BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY)
BTF_ID_FLAGS(func, bpf_copy_from_user_str, KF_SLEEPABLE)
+BTF_ID_FLAGS(func, bpf_get_kmem_cache)
+BTF_ID_FLAGS(func, bpf_iter_kmem_cache_new, KF_ITER_NEW | KF_SLEEPABLE)
+BTF_ID_FLAGS(func, bpf_iter_kmem_cache_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE)
+BTF_ID_FLAGS(func, bpf_iter_kmem_cache_destroy, KF_ITER_DESTROY | KF_SLEEPABLE)
BTF_KFUNCS_END(common_btf_ids)
static const struct btf_kfunc_id_set common_kfunc_set = {
diff --git a/kernel/bpf/kmem_cache_iter.c b/kernel/bpf/kmem_cache_iter.c
new file mode 100644
index 000000000000..3ae2158d767f
--- /dev/null
+++ b/kernel/bpf/kmem_cache_iter.c
@@ -0,0 +1,238 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2024 Google */
+#include <linux/bpf.h>
+#include <linux/btf_ids.h>
+#include <linux/slab.h>
+#include <linux/kernel.h>
+#include <linux/seq_file.h>
+
+#include "../../mm/slab.h" /* kmem_cache, slab_caches and slab_mutex */
+
+/* open-coded version */
+struct bpf_iter_kmem_cache {
+ __u64 __opaque[1];
+} __attribute__((aligned(8)));
+
+struct bpf_iter_kmem_cache_kern {
+ struct kmem_cache *pos;
+} __attribute__((aligned(8)));
+
+#define KMEM_CACHE_POS_START ((void *)1L)
+
+__bpf_kfunc_start_defs();
+
+__bpf_kfunc int bpf_iter_kmem_cache_new(struct bpf_iter_kmem_cache *it)
+{
+ struct bpf_iter_kmem_cache_kern *kit = (void *)it;
+
+ BUILD_BUG_ON(sizeof(*kit) > sizeof(*it));
+ BUILD_BUG_ON(__alignof__(*kit) != __alignof__(*it));
+
+ kit->pos = KMEM_CACHE_POS_START;
+ return 0;
+}
+
+__bpf_kfunc struct kmem_cache *bpf_iter_kmem_cache_next(struct bpf_iter_kmem_cache *it)
+{
+ struct bpf_iter_kmem_cache_kern *kit = (void *)it;
+ struct kmem_cache *prev = kit->pos;
+ struct kmem_cache *next;
+ bool destroy = false;
+
+ if (!prev)
+ return NULL;
+
+ mutex_lock(&slab_mutex);
+
+ if (list_empty(&slab_caches)) {
+ mutex_unlock(&slab_mutex);
+ return NULL;
+ }
+
+ if (prev == KMEM_CACHE_POS_START)
+ next = list_first_entry(&slab_caches, struct kmem_cache, list);
+ else if (list_last_entry(&slab_caches, struct kmem_cache, list) == prev)
+ next = NULL;
+ else
+ next = list_next_entry(prev, list);
+
+ /* boot_caches have negative refcount, don't touch them */
+ if (next && next->refcount > 0)
+ next->refcount++;
+
+ /* Skip kmem_cache_destroy() for active entries */
+ if (prev && prev != KMEM_CACHE_POS_START) {
+ if (prev->refcount > 1)
+ prev->refcount--;
+ else if (prev->refcount == 1)
+ destroy = true;
+ }
+
+ mutex_unlock(&slab_mutex);
+
+ if (destroy)
+ kmem_cache_destroy(prev);
+
+ kit->pos = next;
+ return next;
+}
+
+__bpf_kfunc void bpf_iter_kmem_cache_destroy(struct bpf_iter_kmem_cache *it)
+{
+ struct bpf_iter_kmem_cache_kern *kit = (void *)it;
+ struct kmem_cache *s = kit->pos;
+ bool destroy = false;
+
+ if (s == NULL || s == KMEM_CACHE_POS_START)
+ return;
+
+ mutex_lock(&slab_mutex);
+
+ /* Skip kmem_cache_destroy() for active entries */
+ if (s->refcount > 1)
+ s->refcount--;
+ else if (s->refcount == 1)
+ destroy = true;
+
+ mutex_unlock(&slab_mutex);
+
+ if (destroy)
+ kmem_cache_destroy(s);
+}
+
+__bpf_kfunc_end_defs();
+
+struct bpf_iter__kmem_cache {
+ __bpf_md_ptr(struct bpf_iter_meta *, meta);
+ __bpf_md_ptr(struct kmem_cache *, s);
+};
+
+union kmem_cache_iter_priv {
+ struct bpf_iter_kmem_cache it;
+ struct bpf_iter_kmem_cache_kern kit;
+};
+
+static void *kmem_cache_iter_seq_start(struct seq_file *seq, loff_t *pos)
+{
+ loff_t cnt = 0;
+ bool found = false;
+ struct kmem_cache *s;
+ union kmem_cache_iter_priv *p = seq->private;
+
+ mutex_lock(&slab_mutex);
+
+ /* Find an entry at the given position in the slab_caches list instead
+ * of keeping a reference (of the last visited entry, if any) out of
+ * slab_mutex. It might miss something if one is deleted in the middle
+ * while it releases the lock. But it should be rare and there's not
+ * much we can do about it.
+ */
+ list_for_each_entry(s, &slab_caches, list) {
+ if (cnt == *pos) {
+ /* Make sure this entry remains in the list by getting
+ * a new reference count. Note that boot_cache entries
+ * have a negative refcount, so don't touch them.
+ */
+ if (s->refcount > 0)
+ s->refcount++;
+ found = true;
+ break;
+ }
+ cnt++;
+ }
+ mutex_unlock(&slab_mutex);
+
+ if (!found)
+ s = NULL;
+
+ p->kit.pos = s;
+ return s;
+}
+
+static void kmem_cache_iter_seq_stop(struct seq_file *seq, void *v)
+{
+ struct bpf_iter_meta meta;
+ struct bpf_iter__kmem_cache ctx = {
+ .meta = &meta,
+ .s = v,
+ };
+ union kmem_cache_iter_priv *p = seq->private;
+ struct bpf_prog *prog;
+
+ meta.seq = seq;
+ prog = bpf_iter_get_info(&meta, true);
+ if (prog && !ctx.s)
+ bpf_iter_run_prog(prog, &ctx);
+
+ bpf_iter_kmem_cache_destroy(&p->it);
+}
+
+static void *kmem_cache_iter_seq_next(struct seq_file *seq, void *v, loff_t *pos)
+{
+ union kmem_cache_iter_priv *p = seq->private;
+
+ ++*pos;
+
+ return bpf_iter_kmem_cache_next(&p->it);
+}
+
+static int kmem_cache_iter_seq_show(struct seq_file *seq, void *v)
+{
+ struct bpf_iter_meta meta;
+ struct bpf_iter__kmem_cache ctx = {
+ .meta = &meta,
+ .s = v,
+ };
+ struct bpf_prog *prog;
+ int ret = 0;
+
+ meta.seq = seq;
+ prog = bpf_iter_get_info(&meta, false);
+ if (prog)
+ ret = bpf_iter_run_prog(prog, &ctx);
+
+ return ret;
+}
+
+static const struct seq_operations kmem_cache_iter_seq_ops = {
+ .start = kmem_cache_iter_seq_start,
+ .next = kmem_cache_iter_seq_next,
+ .stop = kmem_cache_iter_seq_stop,
+ .show = kmem_cache_iter_seq_show,
+};
+
+BTF_ID_LIST_GLOBAL_SINGLE(bpf_kmem_cache_btf_id, struct, kmem_cache)
+
+static const struct bpf_iter_seq_info kmem_cache_iter_seq_info = {
+ .seq_ops = &kmem_cache_iter_seq_ops,
+ .seq_priv_size = sizeof(union kmem_cache_iter_priv),
+};
+
+static void bpf_iter_kmem_cache_show_fdinfo(const struct bpf_iter_aux_info *aux,
+ struct seq_file *seq)
+{
+ seq_puts(seq, "kmem_cache iter\n");
+}
+
+DEFINE_BPF_ITER_FUNC(kmem_cache, struct bpf_iter_meta *meta,
+ struct kmem_cache *s)
+
+static struct bpf_iter_reg bpf_kmem_cache_reg_info = {
+ .target = "kmem_cache",
+ .feature = BPF_ITER_RESCHED,
+ .show_fdinfo = bpf_iter_kmem_cache_show_fdinfo,
+ .ctx_arg_info_size = 1,
+ .ctx_arg_info = {
+ { offsetof(struct bpf_iter__kmem_cache, s),
+ PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
+ },
+ .seq_info = &kmem_cache_iter_seq_info,
+};
+
+static int __init bpf_kmem_cache_iter_init(void)
+{
+ bpf_kmem_cache_reg_info.ctx_arg_info[0].btf_id = bpf_kmem_cache_btf_id[0];
+ return bpf_iter_reg_target(&bpf_kmem_cache_reg_info);
+}
+
+late_initcall(bpf_kmem_cache_iter_init);
diff --git a/kernel/bpf/memalloc.c b/kernel/bpf/memalloc.c
index 146f5b57cfb1..889374722d0a 100644
--- a/kernel/bpf/memalloc.c
+++ b/kernel/bpf/memalloc.c
@@ -254,11 +254,8 @@ static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node, bool atomic)
static void free_one(void *obj, bool percpu)
{
- if (percpu) {
+ if (percpu)
free_percpu(((void __percpu **)obj)[1]);
- kfree(obj);
- return;
- }
kfree(obj);
}
diff --git a/kernel/bpf/range_tree.c b/kernel/bpf/range_tree.c
new file mode 100644
index 000000000000..5bdf9aadca3a
--- /dev/null
+++ b/kernel/bpf/range_tree.c
@@ -0,0 +1,272 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2024 Meta Platforms, Inc. and affiliates. */
+#include <linux/interval_tree_generic.h>
+#include <linux/slab.h>
+#include <linux/bpf_mem_alloc.h>
+#include <linux/bpf.h>
+#include "range_tree.h"
+
+/*
+ * struct range_tree is a data structure used to allocate contiguous memory
+ * ranges in bpf arena. It's a large bitmap. The contiguous sequence of bits is
+ * represented by struct range_node or 'rn' for short.
+ * rn->rn_rbnode links it into an interval tree while
+ * rn->rb_range_size links it into a second rbtree sorted by size of the range.
+ * __find_range() performs binary search and best fit algorithm to find the
+ * range less or equal requested size.
+ * range_tree_clear/set() clears or sets a range of bits in this bitmap. The
+ * adjacent ranges are merged or split at the same time.
+ *
+ * The split/merge logic is based/borrowed from XFS's xbitmap32 added
+ * in commit 6772fcc8890a ("xfs: convert xbitmap to interval tree").
+ *
+ * The implementation relies on external lock to protect rbtree-s.
+ * The alloc/free of range_node-s is done via bpf_mem_alloc.
+ *
+ * bpf arena is using range_tree to represent unallocated slots.
+ * At init time:
+ * range_tree_set(rt, 0, max);
+ * Then:
+ * start = range_tree_find(rt, len);
+ * if (start >= 0)
+ * range_tree_clear(rt, start, len);
+ * to find free range and mark slots as allocated and later:
+ * range_tree_set(rt, start, len);
+ * to mark as unallocated after use.
+ */
+struct range_node {
+ struct rb_node rn_rbnode;
+ struct rb_node rb_range_size;
+ u32 rn_start;
+ u32 rn_last; /* inclusive */
+ u32 __rn_subtree_last;
+};
+
+static struct range_node *rb_to_range_node(struct rb_node *rb)
+{
+ return rb_entry(rb, struct range_node, rb_range_size);
+}
+
+static u32 rn_size(struct range_node *rn)
+{
+ return rn->rn_last - rn->rn_start + 1;
+}
+
+/* Find range that fits best to requested size */
+static inline struct range_node *__find_range(struct range_tree *rt, u32 len)
+{
+ struct rb_node *rb = rt->range_size_root.rb_root.rb_node;
+ struct range_node *best = NULL;
+
+ while (rb) {
+ struct range_node *rn = rb_to_range_node(rb);
+
+ if (len <= rn_size(rn)) {
+ best = rn;
+ rb = rb->rb_right;
+ } else {
+ rb = rb->rb_left;
+ }
+ }
+
+ return best;
+}
+
+s64 range_tree_find(struct range_tree *rt, u32 len)
+{
+ struct range_node *rn;
+
+ rn = __find_range(rt, len);
+ if (!rn)
+ return -ENOENT;
+ return rn->rn_start;
+}
+
+/* Insert the range into rbtree sorted by the range size */
+static inline void __range_size_insert(struct range_node *rn,
+ struct rb_root_cached *root)
+{
+ struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
+ u64 size = rn_size(rn);
+ bool leftmost = true;
+
+ while (*link) {
+ rb = *link;
+ if (size > rn_size(rb_to_range_node(rb))) {
+ link = &rb->rb_left;
+ } else {
+ link = &rb->rb_right;
+ leftmost = false;
+ }
+ }
+
+ rb_link_node(&rn->rb_range_size, rb, link);
+ rb_insert_color_cached(&rn->rb_range_size, root, leftmost);
+}
+
+#define START(node) ((node)->rn_start)
+#define LAST(node) ((node)->rn_last)
+
+INTERVAL_TREE_DEFINE(struct range_node, rn_rbnode, u32,
+ __rn_subtree_last, START, LAST,
+ static inline __maybe_unused,
+ __range_it)
+
+static inline __maybe_unused void
+range_it_insert(struct range_node *rn, struct range_tree *rt)
+{
+ __range_size_insert(rn, &rt->range_size_root);
+ __range_it_insert(rn, &rt->it_root);
+}
+
+static inline __maybe_unused void
+range_it_remove(struct range_node *rn, struct range_tree *rt)
+{
+ rb_erase_cached(&rn->rb_range_size, &rt->range_size_root);
+ RB_CLEAR_NODE(&rn->rb_range_size);
+ __range_it_remove(rn, &rt->it_root);
+}
+
+static inline __maybe_unused struct range_node *
+range_it_iter_first(struct range_tree *rt, u32 start, u32 last)
+{
+ return __range_it_iter_first(&rt->it_root, start, last);
+}
+
+/* Clear the range in this range tree */
+int range_tree_clear(struct range_tree *rt, u32 start, u32 len)
+{
+ u32 last = start + len - 1;
+ struct range_node *new_rn;
+ struct range_node *rn;
+
+ while ((rn = range_it_iter_first(rt, start, last))) {
+ if (rn->rn_start < start && rn->rn_last > last) {
+ u32 old_last = rn->rn_last;
+
+ /* Overlaps with the entire clearing range */
+ range_it_remove(rn, rt);
+ rn->rn_last = start - 1;
+ range_it_insert(rn, rt);
+
+ /* Add a range */
+ migrate_disable();
+ new_rn = bpf_mem_alloc(&bpf_global_ma, sizeof(struct range_node));
+ migrate_enable();
+ if (!new_rn)
+ return -ENOMEM;
+ new_rn->rn_start = last + 1;
+ new_rn->rn_last = old_last;
+ range_it_insert(new_rn, rt);
+ } else if (rn->rn_start < start) {
+ /* Overlaps with the left side of the clearing range */
+ range_it_remove(rn, rt);
+ rn->rn_last = start - 1;
+ range_it_insert(rn, rt);
+ } else if (rn->rn_last > last) {
+ /* Overlaps with the right side of the clearing range */
+ range_it_remove(rn, rt);
+ rn->rn_start = last + 1;
+ range_it_insert(rn, rt);
+ break;
+ } else {
+ /* in the middle of the clearing range */
+ range_it_remove(rn, rt);
+ migrate_disable();
+ bpf_mem_free(&bpf_global_ma, rn);
+ migrate_enable();
+ }
+ }
+ return 0;
+}
+
+/* Is the whole range set ? */
+int is_range_tree_set(struct range_tree *rt, u32 start, u32 len)
+{
+ u32 last = start + len - 1;
+ struct range_node *left;
+
+ /* Is this whole range set ? */
+ left = range_it_iter_first(rt, start, last);
+ if (left && left->rn_start <= start && left->rn_last >= last)
+ return 0;
+ return -ESRCH;
+}
+
+/* Set the range in this range tree */
+int range_tree_set(struct range_tree *rt, u32 start, u32 len)
+{
+ u32 last = start + len - 1;
+ struct range_node *right;
+ struct range_node *left;
+ int err;
+
+ /* Is this whole range already set ? */
+ left = range_it_iter_first(rt, start, last);
+ if (left && left->rn_start <= start && left->rn_last >= last)
+ return 0;
+
+ /* Clear out everything in the range we want to set. */
+ err = range_tree_clear(rt, start, len);
+ if (err)
+ return err;
+
+ /* Do we have a left-adjacent range ? */
+ left = range_it_iter_first(rt, start - 1, start - 1);
+ if (left && left->rn_last + 1 != start)
+ return -EFAULT;
+
+ /* Do we have a right-adjacent range ? */
+ right = range_it_iter_first(rt, last + 1, last + 1);
+ if (right && right->rn_start != last + 1)
+ return -EFAULT;
+
+ if (left && right) {
+ /* Combine left and right adjacent ranges */
+ range_it_remove(left, rt);
+ range_it_remove(right, rt);
+ left->rn_last = right->rn_last;
+ range_it_insert(left, rt);
+ migrate_disable();
+ bpf_mem_free(&bpf_global_ma, right);
+ migrate_enable();
+ } else if (left) {
+ /* Combine with the left range */
+ range_it_remove(left, rt);
+ left->rn_last = last;
+ range_it_insert(left, rt);
+ } else if (right) {
+ /* Combine with the right range */
+ range_it_remove(right, rt);
+ right->rn_start = start;
+ range_it_insert(right, rt);
+ } else {
+ migrate_disable();
+ left = bpf_mem_alloc(&bpf_global_ma, sizeof(struct range_node));
+ migrate_enable();
+ if (!left)
+ return -ENOMEM;
+ left->rn_start = start;
+ left->rn_last = last;
+ range_it_insert(left, rt);
+ }
+ return 0;
+}
+
+void range_tree_destroy(struct range_tree *rt)
+{
+ struct range_node *rn;
+
+ while ((rn = range_it_iter_first(rt, 0, -1U))) {
+ range_it_remove(rn, rt);
+ migrate_disable();
+ bpf_mem_free(&bpf_global_ma, rn);
+ migrate_enable();
+ }
+}
+
+void range_tree_init(struct range_tree *rt)
+{
+ rt->it_root = RB_ROOT_CACHED;
+ rt->range_size_root = RB_ROOT_CACHED;
+}
diff --git a/kernel/bpf/range_tree.h b/kernel/bpf/range_tree.h
new file mode 100644
index 000000000000..ff0b9110eb71
--- /dev/null
+++ b/kernel/bpf/range_tree.h
@@ -0,0 +1,21 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/* Copyright (c) 2024 Meta Platforms, Inc. and affiliates. */
+#ifndef _RANGE_TREE_H
+#define _RANGE_TREE_H 1
+
+struct range_tree {
+ /* root of interval tree */
+ struct rb_root_cached it_root;
+ /* root of rbtree of interval sizes */
+ struct rb_root_cached range_size_root;
+};
+
+void range_tree_init(struct range_tree *rt);
+void range_tree_destroy(struct range_tree *rt);
+
+int range_tree_clear(struct range_tree *rt, u32 start, u32 len);
+int range_tree_set(struct range_tree *rt, u32 start, u32 len);
+int is_range_tree_set(struct range_tree *rt, u32 start, u32 len);
+s64 range_tree_find(struct range_tree *rt, u32 len);
+
+#endif
diff --git a/kernel/bpf/syscall.c b/kernel/bpf/syscall.c
index c5aa127ed4cc..5684e8ce132d 100644
--- a/kernel/bpf/syscall.c
+++ b/kernel/bpf/syscall.c
@@ -35,6 +35,7 @@
#include <linux/rcupdate_trace.h>
#include <linux/memcontrol.h>
#include <linux/trace_events.h>
+#include <linux/tracepoint.h>
#include <net/netfilter/nf_bpf_link.h>
#include <net/netkit.h>
@@ -155,6 +156,89 @@ static void maybe_wait_bpf_programs(struct bpf_map *map)
synchronize_rcu();
}
+static void unpin_uptr_kaddr(void *kaddr)
+{
+ if (kaddr)
+ unpin_user_page(virt_to_page(kaddr));
+}
+
+static void __bpf_obj_unpin_uptrs(struct btf_record *rec, u32 cnt, void *obj)
+{
+ const struct btf_field *field;
+ void **uptr_addr;
+ int i;
+
+ for (i = 0, field = rec->fields; i < cnt; i++, field++) {
+ if (field->type != BPF_UPTR)
+ continue;
+
+ uptr_addr = obj + field->offset;
+ unpin_uptr_kaddr(*uptr_addr);
+ }
+}
+
+static void bpf_obj_unpin_uptrs(struct btf_record *rec, void *obj)
+{
+ if (!btf_record_has_field(rec, BPF_UPTR))
+ return;
+
+ __bpf_obj_unpin_uptrs(rec, rec->cnt, obj);
+}
+
+static int bpf_obj_pin_uptrs(struct btf_record *rec, void *obj)
+{
+ const struct btf_field *field;
+ const struct btf_type *t;
+ unsigned long start, end;
+ struct page *page;
+ void **uptr_addr;
+ int i, err;
+
+ if (!btf_record_has_field(rec, BPF_UPTR))
+ return 0;
+
+ for (i = 0, field = rec->fields; i < rec->cnt; i++, field++) {
+ if (field->type != BPF_UPTR)
+ continue;
+
+ uptr_addr = obj + field->offset;
+ start = *(unsigned long *)uptr_addr;
+ if (!start)
+ continue;
+
+ t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id);
+ /* t->size was checked for zero before */
+ if (check_add_overflow(start, t->size - 1, &end)) {
+ err = -EFAULT;
+ goto unpin_all;
+ }
+
+ /* The uptr's struct cannot span across two pages */
+ if ((start & PAGE_MASK) != (end & PAGE_MASK)) {
+ err = -EOPNOTSUPP;
+ goto unpin_all;
+ }
+
+ err = pin_user_pages_fast(start, 1, FOLL_LONGTERM | FOLL_WRITE, &page);
+ if (err != 1)
+ goto unpin_all;
+
+ if (PageHighMem(page)) {
+ err = -EOPNOTSUPP;
+ unpin_user_page(page);
+ goto unpin_all;
+ }
+
+ *uptr_addr = page_address(page) + offset_in_page(start);
+ }
+
+ return 0;
+
+unpin_all:
+ __bpf_obj_unpin_uptrs(rec, i, obj);
+ return err;
+}
+
static int bpf_map_update_value(struct bpf_map *map, struct file *map_file,
void *key, void *value, __u64 flags)
{
@@ -199,9 +283,14 @@ static int bpf_map_update_value(struct bpf_map *map, struct file *map_file,
map->map_type == BPF_MAP_TYPE_BLOOM_FILTER) {
err = map->ops->map_push_elem(map, value, flags);
} else {
- rcu_read_lock();
- err = map->ops->map_update_elem(map, key, value, flags);
- rcu_read_unlock();
+ err = bpf_obj_pin_uptrs(map->record, value);
+ if (!err) {
+ rcu_read_lock();
+ err = map->ops->map_update_elem(map, key, value, flags);
+ rcu_read_unlock();
+ if (err)
+ bpf_obj_unpin_uptrs(map->record, value);
+ }
}
bpf_enable_instrumentation();
@@ -548,6 +637,7 @@ void btf_record_free(struct btf_record *rec)
case BPF_KPTR_UNREF:
case BPF_KPTR_REF:
case BPF_KPTR_PERCPU:
+ case BPF_UPTR:
if (rec->fields[i].kptr.module)
module_put(rec->fields[i].kptr.module);
if (btf_is_kernel(rec->fields[i].kptr.btf))
@@ -597,6 +687,7 @@ struct btf_record *btf_record_dup(const struct btf_record *rec)
case BPF_KPTR_UNREF:
case BPF_KPTR_REF:
case BPF_KPTR_PERCPU:
+ case BPF_UPTR:
if (btf_is_kernel(fields[i].kptr.btf))
btf_get(fields[i].kptr.btf);
if (fields[i].kptr.module && !try_module_get(fields[i].kptr.module)) {
@@ -714,6 +805,10 @@ void bpf_obj_free_fields(const struct btf_record *rec, void *obj)
field->kptr.dtor(xchgd_field);
}
break;
+ case BPF_UPTR:
+ /* The caller ensured that no one is using the uptr */
+ unpin_uptr_kaddr(*(void **)field_ptr);
+ break;
case BPF_LIST_HEAD:
if (WARN_ON_ONCE(rec->spin_lock_off < 0))
continue;
@@ -1105,7 +1200,7 @@ static int map_check_btf(struct bpf_map *map, struct bpf_token *token,
map->record = btf_parse_fields(btf, value_type,
BPF_SPIN_LOCK | BPF_TIMER | BPF_KPTR | BPF_LIST_HEAD |
- BPF_RB_ROOT | BPF_REFCOUNT | BPF_WORKQUEUE,
+ BPF_RB_ROOT | BPF_REFCOUNT | BPF_WORKQUEUE | BPF_UPTR,
map->value_size);
if (!IS_ERR_OR_NULL(map->record)) {
int i;
@@ -1161,6 +1256,12 @@ static int map_check_btf(struct bpf_map *map, struct bpf_token *token,
goto free_map_tab;
}
break;
+ case BPF_UPTR:
+ if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) {
+ ret = -EOPNOTSUPP;
+ goto free_map_tab;
+ }
+ break;
case BPF_LIST_HEAD:
case BPF_RB_ROOT:
if (map->map_type != BPF_MAP_TYPE_HASH &&
@@ -2933,17 +3034,33 @@ static int bpf_obj_get(const union bpf_attr *attr)
attr->file_flags);
}
-void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
- const struct bpf_link_ops *ops, struct bpf_prog *prog)
+/* bpf_link_init_sleepable() allows to specify whether BPF link itself has
+ * "sleepable" semantics, which normally would mean that BPF link's attach
+ * hook can dereference link or link's underlying program for some time after
+ * detachment due to RCU Tasks Trace-based lifetime protection scheme.
+ * BPF program itself can be non-sleepable, yet, because it's transitively
+ * reachable through BPF link, its freeing has to be delayed until after RCU
+ * Tasks Trace GP.
+ */
+void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type,
+ const struct bpf_link_ops *ops, struct bpf_prog *prog,
+ bool sleepable)
{
WARN_ON(ops->dealloc && ops->dealloc_deferred);
atomic64_set(&link->refcnt, 1);
link->type = type;
+ link->sleepable = sleepable;
link->id = 0;
link->ops = ops;
link->prog = prog;
}
+void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
+ const struct bpf_link_ops *ops, struct bpf_prog *prog)
+{
+ bpf_link_init_sleepable(link, type, ops, prog, false);
+}
+
static void bpf_link_free_id(int id)
{
if (!id)
@@ -2976,12 +3093,24 @@ void bpf_link_inc(struct bpf_link *link)
atomic64_inc(&link->refcnt);
}
+static void bpf_link_dealloc(struct bpf_link *link)
+{
+ /* now that we know that bpf_link itself can't be reached, put underlying BPF program */
+ if (link->prog)
+ bpf_prog_put(link->prog);
+
+ /* free bpf_link and its containing memory */
+ if (link->ops->dealloc_deferred)
+ link->ops->dealloc_deferred(link);
+ else
+ link->ops->dealloc(link);
+}
+
static void bpf_link_defer_dealloc_rcu_gp(struct rcu_head *rcu)
{
struct bpf_link *link = container_of(rcu, struct bpf_link, rcu);
- /* free bpf_link and its containing memory */
- link->ops->dealloc_deferred(link);
+ bpf_link_dealloc(link);
}
static void bpf_link_defer_dealloc_mult_rcu_gp(struct rcu_head *rcu)
@@ -2996,26 +3125,27 @@ static void bpf_link_defer_dealloc_mult_rcu_gp(struct rcu_head *rcu)
static void bpf_link_free(struct bpf_link *link)
{
const struct bpf_link_ops *ops = link->ops;
- bool sleepable = false;
bpf_link_free_id(link->id);
- if (link->prog) {
- sleepable = link->prog->sleepable;
- /* detach BPF program, clean up used resources */
+ /* detach BPF program, clean up used resources */
+ if (link->prog)
ops->release(link);
- bpf_prog_put(link->prog);
- }
if (ops->dealloc_deferred) {
- /* schedule BPF link deallocation; if underlying BPF program
- * is sleepable, we need to first wait for RCU tasks trace
- * sync, then go through "classic" RCU grace period
+ /* Schedule BPF link deallocation, which will only then
+ * trigger putting BPF program refcount.
+ * If underlying BPF program is sleepable or BPF link's target
+ * attach hookpoint is sleepable or otherwise requires RCU GPs
+ * to ensure link and its underlying BPF program is not
+ * reachable anymore, we need to first wait for RCU tasks
+ * trace sync, and then go through "classic" RCU grace period
*/
- if (sleepable)
+ if (link->sleepable || (link->prog && link->prog->sleepable))
call_rcu_tasks_trace(&link->rcu, bpf_link_defer_dealloc_mult_rcu_gp);
else
call_rcu(&link->rcu, bpf_link_defer_dealloc_rcu_gp);
- } else if (ops->dealloc)
- ops->dealloc(link);
+ } else if (ops->dealloc) {
+ bpf_link_dealloc(link);
+ }
}
static void bpf_link_put_deferred(struct work_struct *work)
@@ -3218,7 +3348,8 @@ static void bpf_tracing_link_release(struct bpf_link *link)
container_of(link, struct bpf_tracing_link, link.link);
WARN_ON_ONCE(bpf_trampoline_unlink_prog(&tr_link->link,
- tr_link->trampoline));
+ tr_link->trampoline,
+ tr_link->tgt_prog));
bpf_trampoline_put(tr_link->trampoline);
@@ -3358,7 +3489,7 @@ static int bpf_tracing_prog_attach(struct bpf_prog *prog,
* in prog->aux
*
* - if prog->aux->dst_trampoline is NULL, the program has already been
- * attached to a target and its initial target was cleared (below)
+ * attached to a target and its initial target was cleared (below)
*
* - if tgt_prog != NULL, the caller specified tgt_prog_fd +
* target_btf_id using the link_create API.
@@ -3433,7 +3564,7 @@ static int bpf_tracing_prog_attach(struct bpf_prog *prog,
if (err)
goto out_unlock;
- err = bpf_trampoline_link_prog(&link->link, tr);
+ err = bpf_trampoline_link_prog(&link->link, tr, tgt_prog);
if (err) {
bpf_link_cleanup(&link_primer);
link = NULL;
@@ -3835,8 +3966,9 @@ static int bpf_raw_tp_link_attach(struct bpf_prog *prog,
err = -ENOMEM;
goto out_put_btp;
}
- bpf_link_init(&link->link, BPF_LINK_TYPE_RAW_TRACEPOINT,
- &bpf_raw_tp_link_lops, prog);
+ bpf_link_init_sleepable(&link->link, BPF_LINK_TYPE_RAW_TRACEPOINT,
+ &bpf_raw_tp_link_lops, prog,
+ tracepoint_is_faultable(btp->tp));
link->btp = btp;
link->cookie = cookie;
@@ -4002,10 +4134,14 @@ static int bpf_prog_attach_check_attach_type(const struct bpf_prog *prog,
if (prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI &&
attach_type != BPF_TRACE_UPROBE_MULTI)
return -EINVAL;
+ if (prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION &&
+ attach_type != BPF_TRACE_UPROBE_SESSION)
+ return -EINVAL;
if (attach_type != BPF_PERF_EVENT &&
attach_type != BPF_TRACE_KPROBE_MULTI &&
attach_type != BPF_TRACE_KPROBE_SESSION &&
- attach_type != BPF_TRACE_UPROBE_MULTI)
+ attach_type != BPF_TRACE_UPROBE_MULTI &&
+ attach_type != BPF_TRACE_UPROBE_SESSION)
return -EINVAL;
return 0;
case BPF_PROG_TYPE_SCHED_CLS:
@@ -5258,7 +5394,8 @@ static int link_create(union bpf_attr *attr, bpfptr_t uattr)
else if (attr->link_create.attach_type == BPF_TRACE_KPROBE_MULTI ||
attr->link_create.attach_type == BPF_TRACE_KPROBE_SESSION)
ret = bpf_kprobe_multi_link_attach(attr, prog);
- else if (attr->link_create.attach_type == BPF_TRACE_UPROBE_MULTI)
+ else if (attr->link_create.attach_type == BPF_TRACE_UPROBE_MULTI ||
+ attr->link_create.attach_type == BPF_TRACE_UPROBE_SESSION)
ret = bpf_uprobe_multi_link_attach(attr, prog);
break;
default:
diff --git a/kernel/bpf/task_iter.c b/kernel/bpf/task_iter.c
index 5af9e130e500..98d9b4c0daff 100644
--- a/kernel/bpf/task_iter.c
+++ b/kernel/bpf/task_iter.c
@@ -5,7 +5,6 @@
#include <linux/namei.h>
#include <linux/pid_namespace.h>
#include <linux/fs.h>
-#include <linux/fdtable.h>
#include <linux/filter.h>
#include <linux/bpf_mem_alloc.h>
#include <linux/btf_ids.h>
@@ -286,17 +285,14 @@ again:
curr_fd = 0;
}
- rcu_read_lock();
- f = task_lookup_next_fdget_rcu(curr_task, &curr_fd);
+ f = fget_task_next(curr_task, &curr_fd);
if (f) {
/* set info->fd */
info->fd = curr_fd;
- rcu_read_unlock();
return f;
}
/* the current task is done, go to the next task */
- rcu_read_unlock();
put_task_struct(curr_task);
if (info->common.type == BPF_TASK_ITER_TID) {
diff --git a/kernel/bpf/token.c b/kernel/bpf/token.c
index dcbec1a0dfb3..26057aa13503 100644
--- a/kernel/bpf/token.c
+++ b/kernel/bpf/token.c
@@ -1,6 +1,5 @@
#include <linux/bpf.h>
#include <linux/vmalloc.h>
-#include <linux/fdtable.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/kernel.h>
diff --git a/kernel/bpf/trampoline.c b/kernel/bpf/trampoline.c
index f8302a5ca400..c4b1a98ff726 100644
--- a/kernel/bpf/trampoline.c
+++ b/kernel/bpf/trampoline.c
@@ -115,10 +115,14 @@ bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
(ptype == BPF_PROG_TYPE_LSM && eatype == BPF_LSM_MAC);
}
-void bpf_image_ksym_add(void *data, unsigned int size, struct bpf_ksym *ksym)
+void bpf_image_ksym_init(void *data, unsigned int size, struct bpf_ksym *ksym)
{
ksym->start = (unsigned long) data;
ksym->end = ksym->start + size;
+}
+
+void bpf_image_ksym_add(struct bpf_ksym *ksym)
+{
bpf_ksym_add(ksym);
perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start,
PAGE_SIZE, false, ksym->name);
@@ -377,7 +381,8 @@ static struct bpf_tramp_image *bpf_tramp_image_alloc(u64 key, int size)
ksym = &im->ksym;
INIT_LIST_HEAD_RCU(&ksym->lnode);
snprintf(ksym->name, KSYM_NAME_LEN, "bpf_trampoline_%llu", key);
- bpf_image_ksym_add(image, size, ksym);
+ bpf_image_ksym_init(image, size, ksym);
+ bpf_image_ksym_add(ksym);
return im;
out_free_image:
@@ -523,7 +528,27 @@ static enum bpf_tramp_prog_type bpf_attach_type_to_tramp(struct bpf_prog *prog)
}
}
-static int __bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr)
+static int bpf_freplace_check_tgt_prog(struct bpf_prog *tgt_prog)
+{
+ struct bpf_prog_aux *aux = tgt_prog->aux;
+
+ guard(mutex)(&aux->ext_mutex);
+ if (aux->prog_array_member_cnt)
+ /* Program extensions can not extend target prog when the target
+ * prog has been updated to any prog_array map as tail callee.
+ * It's to prevent a potential infinite loop like:
+ * tgt prog entry -> tgt prog subprog -> freplace prog entry
+ * --tailcall-> tgt prog entry.
+ */
+ return -EBUSY;
+
+ aux->is_extended = true;
+ return 0;
+}
+
+static int __bpf_trampoline_link_prog(struct bpf_tramp_link *link,
+ struct bpf_trampoline *tr,
+ struct bpf_prog *tgt_prog)
{
enum bpf_tramp_prog_type kind;
struct bpf_tramp_link *link_exiting;
@@ -544,6 +569,9 @@ static int __bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_tr
/* Cannot attach extension if fentry/fexit are in use. */
if (cnt)
return -EBUSY;
+ err = bpf_freplace_check_tgt_prog(tgt_prog);
+ if (err)
+ return err;
tr->extension_prog = link->link.prog;
return bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP, NULL,
link->link.prog->bpf_func);
@@ -570,17 +598,21 @@ static int __bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_tr
return err;
}
-int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr)
+int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
+ struct bpf_trampoline *tr,
+ struct bpf_prog *tgt_prog)
{
int err;
mutex_lock(&tr->mutex);
- err = __bpf_trampoline_link_prog(link, tr);
+ err = __bpf_trampoline_link_prog(link, tr, tgt_prog);
mutex_unlock(&tr->mutex);
return err;
}
-static int __bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr)
+static int __bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
+ struct bpf_trampoline *tr,
+ struct bpf_prog *tgt_prog)
{
enum bpf_tramp_prog_type kind;
int err;
@@ -591,6 +623,8 @@ static int __bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_
err = bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP,
tr->extension_prog->bpf_func, NULL);
tr->extension_prog = NULL;
+ guard(mutex)(&tgt_prog->aux->ext_mutex);
+ tgt_prog->aux->is_extended = false;
return err;
}
hlist_del_init(&link->tramp_hlist);
@@ -599,12 +633,14 @@ static int __bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_
}
/* bpf_trampoline_unlink_prog() should never fail. */
-int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr)
+int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
+ struct bpf_trampoline *tr,
+ struct bpf_prog *tgt_prog)
{
int err;
mutex_lock(&tr->mutex);
- err = __bpf_trampoline_unlink_prog(link, tr);
+ err = __bpf_trampoline_unlink_prog(link, tr, tgt_prog);
mutex_unlock(&tr->mutex);
return err;
}
@@ -619,7 +655,7 @@ static void bpf_shim_tramp_link_release(struct bpf_link *link)
if (!shim_link->trampoline)
return;
- WARN_ON_ONCE(bpf_trampoline_unlink_prog(&shim_link->link, shim_link->trampoline));
+ WARN_ON_ONCE(bpf_trampoline_unlink_prog(&shim_link->link, shim_link->trampoline, NULL));
bpf_trampoline_put(shim_link->trampoline);
}
@@ -733,7 +769,7 @@ int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
goto err;
}
- err = __bpf_trampoline_link_prog(&shim_link->link, tr);
+ err = __bpf_trampoline_link_prog(&shim_link->link, tr, NULL);
if (err)
goto err;
@@ -868,6 +904,8 @@ static u64 notrace __bpf_prog_enter_recur(struct bpf_prog *prog, struct bpf_tram
if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
bpf_prog_inc_misses_counter(prog);
+ if (prog->aux->recursion_detected)
+ prog->aux->recursion_detected(prog);
return 0;
}
return bpf_prog_start_time();
@@ -944,6 +982,8 @@ u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
bpf_prog_inc_misses_counter(prog);
+ if (prog->aux->recursion_detected)
+ prog->aux->recursion_detected(prog);
return 0;
}
return bpf_prog_start_time();
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
index bb99bada7e2e..1c4ebb326785 100644
--- a/kernel/bpf/verifier.c
+++ b/kernel/bpf/verifier.c
@@ -194,6 +194,8 @@ struct bpf_verifier_stack_elem {
#define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512
+#define BPF_PRIV_STACK_MIN_SIZE 64
+
static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
@@ -418,6 +420,25 @@ static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
return rec;
}
+static bool mask_raw_tp_reg_cond(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) {
+ return reg->type == (PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL) &&
+ bpf_prog_is_raw_tp(env->prog) && !reg->ref_obj_id;
+}
+
+static bool mask_raw_tp_reg(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
+{
+ if (!mask_raw_tp_reg_cond(env, reg))
+ return false;
+ reg->type &= ~PTR_MAYBE_NULL;
+ return true;
+}
+
+static void unmask_raw_tp_reg(struct bpf_reg_state *reg, bool result)
+{
+ if (result)
+ reg->type |= PTR_MAYBE_NULL;
+}
+
static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
{
struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
@@ -1265,6 +1286,7 @@ static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_fun
if (!dst->refs)
return -ENOMEM;
+ dst->active_locks = src->active_locks;
dst->acquired_refs = src->acquired_refs;
return 0;
}
@@ -1335,13 +1357,32 @@ static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
if (err)
return err;
id = ++env->id_gen;
+ state->refs[new_ofs].type = REF_TYPE_PTR;
state->refs[new_ofs].id = id;
state->refs[new_ofs].insn_idx = insn_idx;
- state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
return id;
}
+static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type,
+ int id, void *ptr)
+{
+ struct bpf_func_state *state = cur_func(env);
+ int new_ofs = state->acquired_refs;
+ int err;
+
+ err = resize_reference_state(state, state->acquired_refs + 1);
+ if (err)
+ return err;
+ state->refs[new_ofs].type = type;
+ state->refs[new_ofs].id = id;
+ state->refs[new_ofs].insn_idx = insn_idx;
+ state->refs[new_ofs].ptr = ptr;
+
+ state->active_locks++;
+ return 0;
+}
+
/* release function corresponding to acquire_reference_state(). Idempotent. */
static int release_reference_state(struct bpf_func_state *state, int ptr_id)
{
@@ -1349,10 +1390,9 @@ static int release_reference_state(struct bpf_func_state *state, int ptr_id)
last_idx = state->acquired_refs - 1;
for (i = 0; i < state->acquired_refs; i++) {
+ if (state->refs[i].type != REF_TYPE_PTR)
+ continue;
if (state->refs[i].id == ptr_id) {
- /* Cannot release caller references in callbacks */
- if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
- return -EINVAL;
if (last_idx && i != last_idx)
memcpy(&state->refs[i], &state->refs[last_idx],
sizeof(*state->refs));
@@ -1364,6 +1404,45 @@ static int release_reference_state(struct bpf_func_state *state, int ptr_id)
return -EINVAL;
}
+static int release_lock_state(struct bpf_func_state *state, int type, int id, void *ptr)
+{
+ int i, last_idx;
+
+ last_idx = state->acquired_refs - 1;
+ for (i = 0; i < state->acquired_refs; i++) {
+ if (state->refs[i].type != type)
+ continue;
+ if (state->refs[i].id == id && state->refs[i].ptr == ptr) {
+ if (last_idx && i != last_idx)
+ memcpy(&state->refs[i], &state->refs[last_idx],
+ sizeof(*state->refs));
+ memset(&state->refs[last_idx], 0, sizeof(*state->refs));
+ state->acquired_refs--;
+ state->active_locks--;
+ return 0;
+ }
+ }
+ return -EINVAL;
+}
+
+static struct bpf_reference_state *find_lock_state(struct bpf_verifier_env *env, enum ref_state_type type,
+ int id, void *ptr)
+{
+ struct bpf_func_state *state = cur_func(env);
+ int i;
+
+ for (i = 0; i < state->acquired_refs; i++) {
+ struct bpf_reference_state *s = &state->refs[i];
+
+ if (s->type == REF_TYPE_PTR || s->type != type)
+ continue;
+
+ if (s->id == id && s->ptr == ptr)
+ return s;
+ }
+ return NULL;
+}
+
static void free_func_state(struct bpf_func_state *state)
{
if (!state)
@@ -1373,13 +1452,6 @@ static void free_func_state(struct bpf_func_state *state)
kfree(state);
}
-static void clear_jmp_history(struct bpf_verifier_state *state)
-{
- kfree(state->jmp_history);
- state->jmp_history = NULL;
- state->jmp_history_cnt = 0;
-}
-
static void free_verifier_state(struct bpf_verifier_state *state,
bool free_self)
{
@@ -1389,7 +1461,6 @@ static void free_verifier_state(struct bpf_verifier_state *state,
free_func_state(state->frame[i]);
state->frame[i] = NULL;
}
- clear_jmp_history(state);
if (free_self)
kfree(state);
}
@@ -1415,13 +1486,6 @@ static int copy_verifier_state(struct bpf_verifier_state *dst_state,
struct bpf_func_state *dst;
int i, err;
- dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
- src->jmp_history_cnt, sizeof(*dst_state->jmp_history),
- GFP_USER);
- if (!dst_state->jmp_history)
- return -ENOMEM;
- dst_state->jmp_history_cnt = src->jmp_history_cnt;
-
/* if dst has more stack frames then src frame, free them, this is also
* necessary in case of exceptional exits using bpf_throw.
*/
@@ -1434,12 +1498,12 @@ static int copy_verifier_state(struct bpf_verifier_state *dst_state,
dst_state->active_preempt_lock = src->active_preempt_lock;
dst_state->in_sleepable = src->in_sleepable;
dst_state->curframe = src->curframe;
- dst_state->active_lock.ptr = src->active_lock.ptr;
- dst_state->active_lock.id = src->active_lock.id;
dst_state->branches = src->branches;
dst_state->parent = src->parent;
dst_state->first_insn_idx = src->first_insn_idx;
dst_state->last_insn_idx = src->last_insn_idx;
+ dst_state->insn_hist_start = src->insn_hist_start;
+ dst_state->insn_hist_end = src->insn_hist_end;
dst_state->dfs_depth = src->dfs_depth;
dst_state->callback_unroll_depth = src->callback_unroll_depth;
dst_state->used_as_loop_entry = src->used_as_loop_entry;
@@ -2492,9 +2556,14 @@ static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
* The caller state doesn't matter.
* This is async callback. It starts in a fresh stack.
* Initialize it similar to do_check_common().
+ * But we do need to make sure to not clobber insn_hist, so we keep
+ * chaining insn_hist_start/insn_hist_end indices as for a normal
+ * child state.
*/
elem->st.branches = 1;
elem->st.in_sleepable = is_sleepable;
+ elem->st.insn_hist_start = env->cur_state->insn_hist_end;
+ elem->st.insn_hist_end = elem->st.insn_hist_start;
frame = kzalloc(sizeof(*frame), GFP_KERNEL);
if (!frame)
goto err;
@@ -3474,11 +3543,10 @@ static void linked_regs_unpack(u64 val, struct linked_regs *s)
}
/* for any branch, call, exit record the history of jmps in the given state */
-static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
- int insn_flags, u64 linked_regs)
+static int push_insn_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
+ int insn_flags, u64 linked_regs)
{
- u32 cnt = cur->jmp_history_cnt;
- struct bpf_jmp_history_entry *p;
+ struct bpf_insn_hist_entry *p;
size_t alloc_size;
/* combine instruction flags if we already recorded this instruction */
@@ -3498,29 +3566,32 @@ static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_st
return 0;
}
- cnt++;
- alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
- p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
- if (!p)
- return -ENOMEM;
- cur->jmp_history = p;
+ if (cur->insn_hist_end + 1 > env->insn_hist_cap) {
+ alloc_size = size_mul(cur->insn_hist_end + 1, sizeof(*p));
+ p = kvrealloc(env->insn_hist, alloc_size, GFP_USER);
+ if (!p)
+ return -ENOMEM;
+ env->insn_hist = p;
+ env->insn_hist_cap = alloc_size / sizeof(*p);
+ }
- p = &cur->jmp_history[cnt - 1];
+ p = &env->insn_hist[cur->insn_hist_end];
p->idx = env->insn_idx;
p->prev_idx = env->prev_insn_idx;
p->flags = insn_flags;
p->linked_regs = linked_regs;
- cur->jmp_history_cnt = cnt;
+
+ cur->insn_hist_end++;
env->cur_hist_ent = p;
return 0;
}
-static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st,
- u32 hist_end, int insn_idx)
+static struct bpf_insn_hist_entry *get_insn_hist_entry(struct bpf_verifier_env *env,
+ u32 hist_start, u32 hist_end, int insn_idx)
{
- if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx)
- return &st->jmp_history[hist_end - 1];
+ if (hist_end > hist_start && env->insn_hist[hist_end - 1].idx == insn_idx)
+ return &env->insn_hist[hist_end - 1];
return NULL;
}
@@ -3537,25 +3608,26 @@ static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_stat
* history entry recording a jump from last instruction of parent state and
* first instruction of given state.
*/
-static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
- u32 *history)
+static int get_prev_insn_idx(const struct bpf_verifier_env *env,
+ struct bpf_verifier_state *st,
+ int insn_idx, u32 hist_start, u32 *hist_endp)
{
- u32 cnt = *history;
+ u32 hist_end = *hist_endp;
+ u32 cnt = hist_end - hist_start;
- if (i == st->first_insn_idx) {
+ if (insn_idx == st->first_insn_idx) {
if (cnt == 0)
return -ENOENT;
- if (cnt == 1 && st->jmp_history[0].idx == i)
+ if (cnt == 1 && env->insn_hist[hist_start].idx == insn_idx)
return -ENOENT;
}
- if (cnt && st->jmp_history[cnt - 1].idx == i) {
- i = st->jmp_history[cnt - 1].prev_idx;
- (*history)--;
+ if (cnt && env->insn_hist[hist_end - 1].idx == insn_idx) {
+ (*hist_endp)--;
+ return env->insn_hist[hist_end - 1].prev_idx;
} else {
- i--;
+ return insn_idx - 1;
}
- return i;
}
static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
@@ -3727,7 +3799,7 @@ static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
/* If any register R in hist->linked_regs is marked as precise in bt,
* do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs.
*/
-static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_jmp_history_entry *hist)
+static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_insn_hist_entry *hist)
{
struct linked_regs linked_regs;
bool some_precise = false;
@@ -3772,7 +3844,7 @@ static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
* - *was* processed previously during backtracking.
*/
static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
- struct bpf_jmp_history_entry *hist, struct backtrack_state *bt)
+ struct bpf_insn_hist_entry *hist, struct backtrack_state *bt)
{
const struct bpf_insn_cbs cbs = {
.cb_call = disasm_kfunc_name,
@@ -4191,7 +4263,7 @@ static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_
* SCALARS, as well as any other registers and slots that contribute to
* a tracked state of given registers/stack slots, depending on specific BPF
* assembly instructions (see backtrack_insns() for exact instruction handling
- * logic). This backtracking relies on recorded jmp_history and is able to
+ * logic). This backtracking relies on recorded insn_hist and is able to
* traverse entire chain of parent states. This process ends only when all the
* necessary registers/slots and their transitive dependencies are marked as
* precise.
@@ -4308,8 +4380,9 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
for (;;) {
DECLARE_BITMAP(mask, 64);
- u32 history = st->jmp_history_cnt;
- struct bpf_jmp_history_entry *hist;
+ u32 hist_start = st->insn_hist_start;
+ u32 hist_end = st->insn_hist_end;
+ struct bpf_insn_hist_entry *hist;
if (env->log.level & BPF_LOG_LEVEL2) {
verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
@@ -4348,7 +4421,7 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
err = 0;
skip_first = false;
} else {
- hist = get_jmp_hist_entry(st, history, i);
+ hist = get_insn_hist_entry(env, hist_start, hist_end, i);
err = backtrack_insn(env, i, subseq_idx, hist, bt);
}
if (err == -ENOTSUPP) {
@@ -4365,7 +4438,7 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
*/
return 0;
subseq_idx = i;
- i = get_prev_insn_idx(st, i, &history);
+ i = get_prev_insn_idx(env, st, i, hist_start, &hist_end);
if (i == -ENOENT)
break;
if (i >= env->prog->len) {
@@ -4731,7 +4804,7 @@ static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
}
if (insn_flags)
- return push_jmp_history(env, env->cur_state, insn_flags, 0);
+ return push_insn_history(env, env->cur_state, insn_flags, 0);
return 0;
}
@@ -5038,7 +5111,7 @@ static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
insn_flags = 0; /* we are not restoring spilled register */
}
if (insn_flags)
- return push_jmp_history(env, env->cur_state, insn_flags, 0);
+ return push_insn_history(env, env->cur_state, insn_flags, 0);
return 0;
}
@@ -5423,7 +5496,7 @@ static bool in_sleepable(struct bpf_verifier_env *env)
static bool in_rcu_cs(struct bpf_verifier_env *env)
{
return env->cur_state->active_rcu_lock ||
- env->cur_state->active_lock.ptr ||
+ cur_func(env)->active_locks ||
!in_sleepable(env);
}
@@ -5491,6 +5564,22 @@ static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr
return ret;
}
+static int mark_uptr_ld_reg(struct bpf_verifier_env *env, u32 regno,
+ struct btf_field *field)
+{
+ struct bpf_reg_state *reg;
+ const struct btf_type *t;
+
+ t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id);
+ mark_reg_known_zero(env, cur_regs(env), regno);
+ reg = reg_state(env, regno);
+ reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
+ reg->mem_size = t->size;
+ reg->id = ++env->id_gen;
+
+ return 0;
+}
+
static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
int value_regno, int insn_idx,
struct btf_field *kptr_field)
@@ -5519,9 +5608,15 @@ static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
verbose(env, "store to referenced kptr disallowed\n");
return -EACCES;
}
+ if (class != BPF_LDX && kptr_field->type == BPF_UPTR) {
+ verbose(env, "store to uptr disallowed\n");
+ return -EACCES;
+ }
if (class == BPF_LDX) {
- val_reg = reg_state(env, value_regno);
+ if (kptr_field->type == BPF_UPTR)
+ return mark_uptr_ld_reg(env, value_regno, kptr_field);
+
/* We can simply mark the value_regno receiving the pointer
* value from map as PTR_TO_BTF_ID, with the correct type.
*/
@@ -5579,21 +5674,26 @@ static int check_map_access(struct bpf_verifier_env *env, u32 regno,
case BPF_KPTR_UNREF:
case BPF_KPTR_REF:
case BPF_KPTR_PERCPU:
+ case BPF_UPTR:
if (src != ACCESS_DIRECT) {
- verbose(env, "kptr cannot be accessed indirectly by helper\n");
+ verbose(env, "%s cannot be accessed indirectly by helper\n",
+ btf_field_type_name(field->type));
return -EACCES;
}
if (!tnum_is_const(reg->var_off)) {
- verbose(env, "kptr access cannot have variable offset\n");
+ verbose(env, "%s access cannot have variable offset\n",
+ btf_field_type_name(field->type));
return -EACCES;
}
if (p != off + reg->var_off.value) {
- verbose(env, "kptr access misaligned expected=%u off=%llu\n",
+ verbose(env, "%s access misaligned expected=%u off=%llu\n",
+ btf_field_type_name(field->type),
p, off + reg->var_off.value);
return -EACCES;
}
if (size != bpf_size_to_bytes(BPF_DW)) {
- verbose(env, "kptr access size must be BPF_DW\n");
+ verbose(env, "%s access size must be BPF_DW\n",
+ btf_field_type_name(field->type));
return -EACCES;
}
break;
@@ -5988,6 +6088,34 @@ static int check_ptr_alignment(struct bpf_verifier_env *env,
strict);
}
+static enum priv_stack_mode bpf_enable_priv_stack(struct bpf_prog *prog)
+{
+ if (!bpf_jit_supports_private_stack())
+ return NO_PRIV_STACK;
+
+ /* bpf_prog_check_recur() checks all prog types that use bpf trampoline
+ * while kprobe/tp/perf_event/raw_tp don't use trampoline hence checked
+ * explicitly.
+ */
+ switch (prog->type) {
+ case BPF_PROG_TYPE_KPROBE:
+ case BPF_PROG_TYPE_TRACEPOINT:
+ case BPF_PROG_TYPE_PERF_EVENT:
+ case BPF_PROG_TYPE_RAW_TRACEPOINT:
+ return PRIV_STACK_ADAPTIVE;
+ case BPF_PROG_TYPE_TRACING:
+ case BPF_PROG_TYPE_LSM:
+ case BPF_PROG_TYPE_STRUCT_OPS:
+ if (prog->aux->priv_stack_requested || bpf_prog_check_recur(prog))
+ return PRIV_STACK_ADAPTIVE;
+ fallthrough;
+ default:
+ break;
+ }
+
+ return NO_PRIV_STACK;
+}
+
static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth)
{
if (env->prog->jit_requested)
@@ -6005,17 +6133,20 @@ static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth)
* Since recursion is prevented by check_cfg() this algorithm
* only needs a local stack of MAX_CALL_FRAMES to remember callsites
*/
-static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
+static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx,
+ bool priv_stack_supported)
{
struct bpf_subprog_info *subprog = env->subprog_info;
struct bpf_insn *insn = env->prog->insnsi;
- int depth = 0, frame = 0, i, subprog_end;
+ int depth = 0, frame = 0, i, subprog_end, subprog_depth;
bool tail_call_reachable = false;
int ret_insn[MAX_CALL_FRAMES];
int ret_prog[MAX_CALL_FRAMES];
int j;
i = subprog[idx].start;
+ if (!priv_stack_supported)
+ subprog[idx].priv_stack_mode = NO_PRIV_STACK;
process_func:
/* protect against potential stack overflow that might happen when
* bpf2bpf calls get combined with tailcalls. Limit the caller's stack
@@ -6042,11 +6173,31 @@ process_func:
depth);
return -EACCES;
}
- depth += round_up_stack_depth(env, subprog[idx].stack_depth);
- if (depth > MAX_BPF_STACK) {
- verbose(env, "combined stack size of %d calls is %d. Too large\n",
- frame + 1, depth);
- return -EACCES;
+
+ subprog_depth = round_up_stack_depth(env, subprog[idx].stack_depth);
+ if (priv_stack_supported) {
+ /* Request private stack support only if the subprog stack
+ * depth is no less than BPF_PRIV_STACK_MIN_SIZE. This is to
+ * avoid jit penalty if the stack usage is small.
+ */
+ if (subprog[idx].priv_stack_mode == PRIV_STACK_UNKNOWN &&
+ subprog_depth >= BPF_PRIV_STACK_MIN_SIZE)
+ subprog[idx].priv_stack_mode = PRIV_STACK_ADAPTIVE;
+ }
+
+ if (subprog[idx].priv_stack_mode == PRIV_STACK_ADAPTIVE) {
+ if (subprog_depth > MAX_BPF_STACK) {
+ verbose(env, "stack size of subprog %d is %d. Too large\n",
+ idx, subprog_depth);
+ return -EACCES;
+ }
+ } else {
+ depth += subprog_depth;
+ if (depth > MAX_BPF_STACK) {
+ verbose(env, "combined stack size of %d calls is %d. Too large\n",
+ frame + 1, depth);
+ return -EACCES;
+ }
}
continue_func:
subprog_end = subprog[idx + 1].start;
@@ -6103,6 +6254,8 @@ continue_func:
}
i = next_insn;
idx = sidx;
+ if (!priv_stack_supported)
+ subprog[idx].priv_stack_mode = NO_PRIV_STACK;
if (subprog[idx].has_tail_call)
tail_call_reachable = true;
@@ -6136,7 +6289,8 @@ continue_func:
*/
if (frame == 0)
return 0;
- depth -= round_up_stack_depth(env, subprog[idx].stack_depth);
+ if (subprog[idx].priv_stack_mode != PRIV_STACK_ADAPTIVE)
+ depth -= round_up_stack_depth(env, subprog[idx].stack_depth);
frame--;
i = ret_insn[frame];
idx = ret_prog[frame];
@@ -6145,17 +6299,45 @@ continue_func:
static int check_max_stack_depth(struct bpf_verifier_env *env)
{
+ enum priv_stack_mode priv_stack_mode = PRIV_STACK_UNKNOWN;
struct bpf_subprog_info *si = env->subprog_info;
+ bool priv_stack_supported;
int ret;
for (int i = 0; i < env->subprog_cnt; i++) {
+ if (si[i].has_tail_call) {
+ priv_stack_mode = NO_PRIV_STACK;
+ break;
+ }
+ }
+
+ if (priv_stack_mode == PRIV_STACK_UNKNOWN)
+ priv_stack_mode = bpf_enable_priv_stack(env->prog);
+
+ /* All async_cb subprogs use normal kernel stack. If a particular
+ * subprog appears in both main prog and async_cb subtree, that
+ * subprog will use normal kernel stack to avoid potential nesting.
+ * The reverse subprog traversal ensures when main prog subtree is
+ * checked, the subprogs appearing in async_cb subtrees are already
+ * marked as using normal kernel stack, so stack size checking can
+ * be done properly.
+ */
+ for (int i = env->subprog_cnt - 1; i >= 0; i--) {
if (!i || si[i].is_async_cb) {
- ret = check_max_stack_depth_subprog(env, i);
+ priv_stack_supported = !i && priv_stack_mode == PRIV_STACK_ADAPTIVE;
+ ret = check_max_stack_depth_subprog(env, i, priv_stack_supported);
if (ret < 0)
return ret;
}
- continue;
}
+
+ for (int i = 0; i < env->subprog_cnt; i++) {
+ if (si[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) {
+ env->prog->aux->jits_use_priv_stack = true;
+ break;
+ }
+ }
+
return 0;
}
@@ -6595,6 +6777,7 @@ static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
const char *field_name = NULL;
enum bpf_type_flag flag = 0;
u32 btf_id = 0;
+ bool mask;
int ret;
if (!env->allow_ptr_leaks) {
@@ -6666,7 +6849,21 @@ static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
if (ret < 0)
return ret;
-
+ /* For raw_tp progs, we allow dereference of PTR_MAYBE_NULL
+ * trusted PTR_TO_BTF_ID, these are the ones that are possibly
+ * arguments to the raw_tp. Since internal checks in for trusted
+ * reg in check_ptr_to_btf_access would consider PTR_MAYBE_NULL
+ * modifier as problematic, mask it out temporarily for the
+ * check. Don't apply this to pointers with ref_obj_id > 0, as
+ * those won't be raw_tp args.
+ *
+ * We may end up applying this relaxation to other trusted
+ * PTR_TO_BTF_ID with maybe null flag, since we cannot
+ * distinguish PTR_MAYBE_NULL tagged for arguments vs normal
+ * tagging, but that should expand allowed behavior, and not
+ * cause regression for existing behavior.
+ */
+ mask = mask_raw_tp_reg(env, reg);
if (ret != PTR_TO_BTF_ID) {
/* just mark; */
@@ -6727,8 +6924,13 @@ static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
clear_trusted_flags(&flag);
}
- if (atype == BPF_READ && value_regno >= 0)
+ if (atype == BPF_READ && value_regno >= 0) {
mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
+ /* We've assigned a new type to regno, so don't undo masking. */
+ if (regno == value_regno)
+ mask = false;
+ }
+ unmask_raw_tp_reg(reg, mask);
return 0;
}
@@ -6949,7 +7151,7 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
return err;
if (tnum_is_const(reg->var_off))
kptr_field = btf_record_find(reg->map_ptr->record,
- off + reg->var_off.value, BPF_KPTR);
+ off + reg->var_off.value, BPF_KPTR | BPF_UPTR);
if (kptr_field) {
err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
} else if (t == BPF_READ && value_regno >= 0) {
@@ -7103,7 +7305,7 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
if (!err && t == BPF_READ && value_regno >= 0)
mark_reg_unknown(env, regs, value_regno);
} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
- !type_may_be_null(reg->type)) {
+ (mask_raw_tp_reg_cond(env, reg) || !type_may_be_null(reg->type))) {
err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
value_regno);
} else if (reg->type == CONST_PTR_TO_MAP) {
@@ -7648,19 +7850,20 @@ static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg
* Since only one bpf_spin_lock is allowed the checks are simpler than
* reg_is_refcounted() logic. The verifier needs to remember only
* one spin_lock instead of array of acquired_refs.
- * cur_state->active_lock remembers which map value element or allocated
+ * cur_func(env)->active_locks remembers which map value element or allocated
* object got locked and clears it after bpf_spin_unlock.
*/
static int process_spin_lock(struct bpf_verifier_env *env, int regno,
bool is_lock)
{
struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
- struct bpf_verifier_state *cur = env->cur_state;
bool is_const = tnum_is_const(reg->var_off);
+ struct bpf_func_state *cur = cur_func(env);
u64 val = reg->var_off.value;
struct bpf_map *map = NULL;
struct btf *btf = NULL;
struct btf_record *rec;
+ int err;
if (!is_const) {
verbose(env,
@@ -7692,16 +7895,23 @@ static int process_spin_lock(struct bpf_verifier_env *env, int regno,
return -EINVAL;
}
if (is_lock) {
- if (cur->active_lock.ptr) {
+ void *ptr;
+
+ if (map)
+ ptr = map;
+ else
+ ptr = btf;
+
+ if (cur->active_locks) {
verbose(env,
"Locking two bpf_spin_locks are not allowed\n");
return -EINVAL;
}
- if (map)
- cur->active_lock.ptr = map;
- else
- cur->active_lock.ptr = btf;
- cur->active_lock.id = reg->id;
+ err = acquire_lock_state(env, env->insn_idx, REF_TYPE_LOCK, reg->id, ptr);
+ if (err < 0) {
+ verbose(env, "Failed to acquire lock state\n");
+ return err;
+ }
} else {
void *ptr;
@@ -7710,20 +7920,17 @@ static int process_spin_lock(struct bpf_verifier_env *env, int regno,
else
ptr = btf;
- if (!cur->active_lock.ptr) {
+ if (!cur->active_locks) {
verbose(env, "bpf_spin_unlock without taking a lock\n");
return -EINVAL;
}
- if (cur->active_lock.ptr != ptr ||
- cur->active_lock.id != reg->id) {
+
+ if (release_lock_state(cur_func(env), REF_TYPE_LOCK, reg->id, ptr)) {
verbose(env, "bpf_spin_unlock of different lock\n");
return -EINVAL;
}
invalidate_non_owning_refs(env);
-
- cur->active_lock.ptr = NULL;
- cur->active_lock.id = 0;
}
return 0;
}
@@ -8796,6 +9003,7 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
enum bpf_reg_type type = reg->type;
u32 *arg_btf_id = NULL;
int err = 0;
+ bool mask;
if (arg_type == ARG_DONTCARE)
return 0;
@@ -8836,11 +9044,11 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
arg_btf_id = fn->arg_btf_id[arg];
+ mask = mask_raw_tp_reg(env, reg);
err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
- if (err)
- return err;
- err = check_func_arg_reg_off(env, reg, regno, arg_type);
+ err = err ?: check_func_arg_reg_off(env, reg, regno, arg_type);
+ unmask_raw_tp_reg(reg, mask);
if (err)
return err;
@@ -9635,14 +9843,17 @@ static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
return ret;
} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
struct bpf_call_arg_meta meta;
+ bool mask;
int err;
if (register_is_null(reg) && type_may_be_null(arg->arg_type))
continue;
memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */
+ mask = mask_raw_tp_reg(env, reg);
err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta);
err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type);
+ unmask_raw_tp_reg(reg, mask);
if (err)
return err;
} else {
@@ -9781,7 +9992,7 @@ static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
const char *sub_name = subprog_name(env, subprog);
/* Only global subprogs cannot be called with a lock held. */
- if (env->cur_state->active_lock.ptr) {
+ if (cur_func(env)->active_locks) {
verbose(env, "global function calls are not allowed while holding a lock,\n"
"use static function instead\n");
return -EINVAL;
@@ -9910,7 +10121,7 @@ static int set_loop_callback_state(struct bpf_verifier_env *env,
{
/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
* u64 flags);
- * callback_fn(u32 index, void *callback_ctx);
+ * callback_fn(u64 index, void *callback_ctx);
*/
callee->regs[BPF_REG_1].type = SCALAR_VALUE;
callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
@@ -10122,17 +10333,10 @@ static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
caller->regs[BPF_REG_0] = *r0;
}
- /* callback_fn frame should have released its own additions to parent's
- * reference state at this point, or check_reference_leak would
- * complain, hence it must be the same as the caller. There is no need
- * to copy it back.
- */
- if (!callee->in_callback_fn) {
- /* Transfer references to the caller */
- err = copy_reference_state(caller, callee);
- if (err)
- return err;
- }
+ /* Transfer references to the caller */
+ err = copy_reference_state(caller, callee);
+ if (err)
+ return err;
/* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
* there function call logic would reschedule callback visit. If iteration
@@ -10302,11 +10506,11 @@ static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exi
bool refs_lingering = false;
int i;
- if (!exception_exit && state->frameno && !state->in_callback_fn)
+ if (!exception_exit && state->frameno)
return 0;
for (i = 0; i < state->acquired_refs; i++) {
- if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
+ if (state->refs[i].type != REF_TYPE_PTR)
continue;
verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
state->refs[i].id, state->refs[i].insn_idx);
@@ -10315,6 +10519,34 @@ static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exi
return refs_lingering ? -EINVAL : 0;
}
+static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit, bool check_lock, const char *prefix)
+{
+ int err;
+
+ if (check_lock && cur_func(env)->active_locks) {
+ verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix);
+ return -EINVAL;
+ }
+
+ err = check_reference_leak(env, exception_exit);
+ if (err) {
+ verbose(env, "%s would lead to reference leak\n", prefix);
+ return err;
+ }
+
+ if (check_lock && env->cur_state->active_rcu_lock) {
+ verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix);
+ return -EINVAL;
+ }
+
+ if (check_lock && env->cur_state->active_preempt_lock) {
+ verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
struct bpf_reg_state *regs)
{
@@ -10583,11 +10815,9 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn
switch (func_id) {
case BPF_FUNC_tail_call:
- err = check_reference_leak(env, false);
- if (err) {
- verbose(env, "tail_call would lead to reference leak\n");
+ err = check_resource_leak(env, false, true, "tail_call");
+ if (err)
return err;
- }
break;
case BPF_FUNC_get_local_storage:
/* check that flags argument in get_local_storage(map, flags) is 0,
@@ -11252,6 +11482,7 @@ enum special_kfunc_type {
KF_bpf_preempt_enable,
KF_bpf_iter_css_task_new,
KF_bpf_session_cookie,
+ KF_bpf_get_kmem_cache,
};
BTF_SET_START(special_kfunc_set)
@@ -11317,6 +11548,7 @@ BTF_ID(func, bpf_session_cookie)
#else
BTF_ID_UNUSED
#endif
+BTF_ID(func, bpf_get_kmem_cache)
static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
{
@@ -11512,10 +11744,9 @@ static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
{
- struct bpf_verifier_state *state = env->cur_state;
struct btf_record *rec = reg_btf_record(reg);
- if (!state->active_lock.ptr) {
+ if (!cur_func(env)->active_locks) {
verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
return -EFAULT;
}
@@ -11612,6 +11843,7 @@ static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_o
*/
static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
{
+ struct bpf_reference_state *s;
void *ptr;
u32 id;
@@ -11628,10 +11860,10 @@ static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_
}
id = reg->id;
- if (!env->cur_state->active_lock.ptr)
+ if (!cur_func(env)->active_locks)
return -EINVAL;
- if (env->cur_state->active_lock.ptr != ptr ||
- env->cur_state->active_lock.id != id) {
+ s = find_lock_state(env, REF_TYPE_LOCK, id, ptr);
+ if (!s) {
verbose(env, "held lock and object are not in the same allocation\n");
return -EINVAL;
}
@@ -11942,6 +12174,7 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
enum bpf_arg_type arg_type = ARG_DONTCARE;
u32 regno = i + 1, ref_id, type_size;
bool is_ret_buf_sz = false;
+ bool mask = false;
int kf_arg_type;
t = btf_type_skip_modifiers(btf, args[i].type, NULL);
@@ -12000,12 +12233,15 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
return -EINVAL;
}
+ mask = mask_raw_tp_reg(env, reg);
if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
(register_is_null(reg) || type_may_be_null(reg->type)) &&
!is_kfunc_arg_nullable(meta->btf, &args[i])) {
verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
+ unmask_raw_tp_reg(reg, mask);
return -EACCES;
}
+ unmask_raw_tp_reg(reg, mask);
if (reg->ref_obj_id) {
if (is_kfunc_release(meta) && meta->ref_obj_id) {
@@ -12063,16 +12299,24 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
break;
+ /* Allow passing maybe NULL raw_tp arguments to
+ * kfuncs for compatibility. Don't apply this to
+ * arguments with ref_obj_id > 0.
+ */
+ mask = mask_raw_tp_reg(env, reg);
if (!is_trusted_reg(reg)) {
if (!is_kfunc_rcu(meta)) {
verbose(env, "R%d must be referenced or trusted\n", regno);
+ unmask_raw_tp_reg(reg, mask);
return -EINVAL;
}
if (!is_rcu_reg(reg)) {
verbose(env, "R%d must be a rcu pointer\n", regno);
+ unmask_raw_tp_reg(reg, mask);
return -EINVAL;
}
}
+ unmask_raw_tp_reg(reg, mask);
fallthrough;
case KF_ARG_PTR_TO_CTX:
case KF_ARG_PTR_TO_DYNPTR:
@@ -12095,7 +12339,9 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
if (is_kfunc_release(meta) && reg->ref_obj_id)
arg_type |= OBJ_RELEASE;
+ mask = mask_raw_tp_reg(env, reg);
ret = check_func_arg_reg_off(env, reg, regno, arg_type);
+ unmask_raw_tp_reg(reg, mask);
if (ret < 0)
return ret;
@@ -12272,6 +12518,7 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
ref_tname = btf_name_by_offset(btf, ref_t->name_off);
fallthrough;
case KF_ARG_PTR_TO_BTF_ID:
+ mask = mask_raw_tp_reg(env, reg);
/* Only base_type is checked, further checks are done here */
if ((base_type(reg->type) != PTR_TO_BTF_ID ||
(bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
@@ -12280,9 +12527,11 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
verbose(env, "expected %s or socket\n",
reg_type_str(env, base_type(reg->type) |
(type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
+ unmask_raw_tp_reg(reg, mask);
return -EINVAL;
}
ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
+ unmask_raw_tp_reg(reg, mask);
if (ret < 0)
return ret;
break;
@@ -12827,6 +13076,9 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
regs[BPF_REG_0].type = PTR_TO_BTF_ID;
regs[BPF_REG_0].btf_id = ptr_type_id;
+ if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache])
+ regs[BPF_REG_0].type |= PTR_UNTRUSTED;
+
if (is_iter_next_kfunc(&meta)) {
struct bpf_reg_state *cur_iter;
@@ -13252,7 +13504,7 @@ static int sanitize_check_bounds(struct bpf_verifier_env *env,
*/
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
struct bpf_insn *insn,
- const struct bpf_reg_state *ptr_reg,
+ struct bpf_reg_state *ptr_reg,
const struct bpf_reg_state *off_reg)
{
struct bpf_verifier_state *vstate = env->cur_state;
@@ -13266,6 +13518,7 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
struct bpf_sanitize_info info = {};
u8 opcode = BPF_OP(insn->code);
u32 dst = insn->dst_reg;
+ bool mask;
int ret;
dst_reg = &regs[dst];
@@ -13292,11 +13545,14 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
return -EACCES;
}
+ mask = mask_raw_tp_reg(env, ptr_reg);
if (ptr_reg->type & PTR_MAYBE_NULL) {
verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
dst, reg_type_str(env, ptr_reg->type));
+ unmask_raw_tp_reg(ptr_reg, mask);
return -EACCES;
}
+ unmask_raw_tp_reg(ptr_reg, mask);
switch (base_type(ptr_reg->type)) {
case PTR_TO_CTX:
@@ -15480,7 +15736,7 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env,
if (dst_reg->type == SCALAR_VALUE && dst_reg->id)
collect_linked_regs(this_branch, dst_reg->id, &linked_regs);
if (linked_regs.cnt > 1) {
- err = push_jmp_history(env, this_branch, 0, linked_regs_pack(&linked_regs));
+ err = push_insn_history(env, this_branch, 0, linked_regs_pack(&linked_regs));
if (err)
return err;
}
@@ -15744,26 +16000,9 @@ static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
* gen_ld_abs() may terminate the program at runtime, leading to
* reference leak.
*/
- err = check_reference_leak(env, false);
- if (err) {
- verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
+ err = check_resource_leak(env, false, true, "BPF_LD_[ABS|IND]");
+ if (err)
return err;
- }
-
- if (env->cur_state->active_lock.ptr) {
- verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
- return -EINVAL;
- }
-
- if (env->cur_state->active_rcu_lock) {
- verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
- return -EINVAL;
- }
-
- if (env->cur_state->active_preempt_lock) {
- verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_preempt_disable-ed region\n");
- return -EINVAL;
- }
if (regs[ctx_reg].type != PTR_TO_CTX) {
verbose(env,
@@ -15909,6 +16148,16 @@ static int check_return_code(struct bpf_verifier_env *env, int regno, const char
return -ENOTSUPP;
}
break;
+ case BPF_PROG_TYPE_KPROBE:
+ switch (env->prog->expected_attach_type) {
+ case BPF_TRACE_KPROBE_SESSION:
+ case BPF_TRACE_UPROBE_SESSION:
+ range = retval_range(0, 1);
+ break;
+ default:
+ return 0;
+ }
+ break;
case BPF_PROG_TYPE_SK_LOOKUP:
range = retval_range(SK_DROP, SK_PASS);
break;
@@ -16175,10 +16424,7 @@ static u32 kfunc_fastcall_clobber_mask(struct bpf_kfunc_call_arg_meta *meta)
/* Same as verifier_inlines_helper_call() but for kfuncs, see comment above */
static bool is_fastcall_kfunc_call(struct bpf_kfunc_call_arg_meta *meta)
{
- if (meta->btf == btf_vmlinux)
- return meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
- meta->func_id == special_kfunc_list[KF_bpf_rdonly_cast];
- return false;
+ return meta->kfunc_flags & KF_FASTCALL;
}
/* LLVM define a bpf_fastcall function attribute.
@@ -17513,8 +17759,20 @@ static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
return false;
for (i = 0; i < old->acquired_refs; i++) {
- if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
+ if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) ||
+ old->refs[i].type != cur->refs[i].type)
return false;
+ switch (old->refs[i].type) {
+ case REF_TYPE_PTR:
+ break;
+ case REF_TYPE_LOCK:
+ if (old->refs[i].ptr != cur->refs[i].ptr)
+ return false;
+ break;
+ default:
+ WARN_ONCE(1, "Unhandled enum type for reference state: %d\n", old->refs[i].type);
+ return false;
+ }
}
return true;
@@ -17592,19 +17850,6 @@ static bool states_equal(struct bpf_verifier_env *env,
if (old->speculative && !cur->speculative)
return false;
- if (old->active_lock.ptr != cur->active_lock.ptr)
- return false;
-
- /* Old and cur active_lock's have to be either both present
- * or both absent.
- */
- if (!!old->active_lock.id != !!cur->active_lock.id)
- return false;
-
- if (old->active_lock.id &&
- !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
- return false;
-
if (old->active_rcu_lock != cur->active_rcu_lock)
return false;
@@ -17880,7 +18125,7 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) ||
/* Avoid accumulating infinitely long jmp history */
- cur->jmp_history_cnt > 40;
+ cur->insn_hist_end - cur->insn_hist_start > 40;
/* bpf progs typically have pruning point every 4 instructions
* http://vger.kernel.org/bpfconf2019.html#session-1
@@ -18078,7 +18323,7 @@ hit:
* the current state.
*/
if (is_jmp_point(env, env->insn_idx))
- err = err ? : push_jmp_history(env, cur, 0, 0);
+ err = err ? : push_insn_history(env, cur, 0, 0);
err = err ? : propagate_precision(env, &sl->state);
if (err)
return err;
@@ -18177,8 +18422,8 @@ next:
cur->parent = new;
cur->first_insn_idx = insn_idx;
+ cur->insn_hist_start = cur->insn_hist_end;
cur->dfs_depth = new->dfs_depth + 1;
- clear_jmp_history(cur);
new_sl->next = *explored_state(env, insn_idx);
*explored_state(env, insn_idx) = new_sl;
/* connect new state to parentage chain. Current frame needs all
@@ -18346,7 +18591,7 @@ static int do_check(struct bpf_verifier_env *env)
}
if (is_jmp_point(env, env->insn_idx)) {
- err = push_jmp_history(env, state, 0, 0);
+ err = push_insn_history(env, state, 0, 0);
if (err)
return err;
}
@@ -18506,7 +18751,7 @@ static int do_check(struct bpf_verifier_env *env)
return -EINVAL;
}
- if (env->cur_state->active_lock.ptr) {
+ if (cur_func(env)->active_locks) {
if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
(insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
(insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
@@ -18555,30 +18800,14 @@ static int do_check(struct bpf_verifier_env *env)
return -EINVAL;
}
process_bpf_exit_full:
- if (env->cur_state->active_lock.ptr && !env->cur_state->curframe) {
- verbose(env, "bpf_spin_unlock is missing\n");
- return -EINVAL;
- }
-
- if (env->cur_state->active_rcu_lock && !env->cur_state->curframe) {
- verbose(env, "bpf_rcu_read_unlock is missing\n");
- return -EINVAL;
- }
-
- if (env->cur_state->active_preempt_lock && !env->cur_state->curframe) {
- verbose(env, "%d bpf_preempt_enable%s missing\n",
- env->cur_state->active_preempt_lock,
- env->cur_state->active_preempt_lock == 1 ? " is" : "(s) are");
- return -EINVAL;
- }
-
/* We must do check_reference_leak here before
* prepare_func_exit to handle the case when
* state->curframe > 0, it may be a callback
* function, for which reference_state must
* match caller reference state when it exits.
*/
- err = check_reference_leak(env, exception_exit);
+ err = check_resource_leak(env, exception_exit, !env->cur_state->curframe,
+ "BPF_EXIT instruction");
if (err)
return err;
@@ -19837,6 +20066,7 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env)
* for this case.
*/
case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
+ case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL:
if (type == BPF_READ) {
if (BPF_MODE(insn->code) == BPF_MEM)
insn->code = BPF_LDX | BPF_PROBE_MEM |
@@ -20041,6 +20271,9 @@ static int jit_subprogs(struct bpf_verifier_env *env)
func[i]->aux->name[0] = 'F';
func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
+ if (env->subprog_info[i].priv_stack_mode == PRIV_STACK_ADAPTIVE)
+ func[i]->aux->jits_use_priv_stack = true;
+
func[i]->jit_requested = 1;
func[i]->blinding_requested = prog->blinding_requested;
func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
@@ -21809,6 +22042,11 @@ static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
}
}
+ if (prog->aux->priv_stack_requested && !bpf_jit_supports_private_stack()) {
+ verbose(env, "Private stack not supported by jit\n");
+ return -EACCES;
+ }
+
/* btf_ctx_access() used this to provide argument type info */
prog->aux->ctx_arg_info =
st_ops_desc->arg_info[member_idx].info;
@@ -22547,6 +22785,7 @@ err_unlock:
if (!is_priv)
mutex_unlock(&bpf_verifier_lock);
vfree(env->insn_aux_data);
+ kvfree(env->insn_hist);
err_free_env:
kvfree(env);
return ret;
diff --git a/kernel/cgroup/cgroup.c b/kernel/cgroup/cgroup.c
index 044c7ba1cc48..d9061bd55436 100644
--- a/kernel/cgroup/cgroup.c
+++ b/kernel/cgroup/cgroup.c
@@ -2140,8 +2140,10 @@ int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
if (ret)
goto exit_stats;
- ret = cgroup_bpf_inherit(root_cgrp);
- WARN_ON_ONCE(ret);
+ if (root == &cgrp_dfl_root) {
+ ret = cgroup_bpf_inherit(root_cgrp);
+ WARN_ON_ONCE(ret);
+ }
trace_cgroup_setup_root(root);
@@ -2314,10 +2316,8 @@ static void cgroup_kill_sb(struct super_block *sb)
* And don't kill the default root.
*/
if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
- !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
- cgroup_bpf_offline(&root->cgrp);
+ !percpu_ref_is_dying(&root->cgrp.self.refcnt))
percpu_ref_kill(&root->cgrp.self.refcnt);
- }
cgroup_put(&root->cgrp);
kernfs_kill_sb(sb);
}
@@ -5710,9 +5710,11 @@ static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
if (ret)
goto out_kernfs_remove;
- ret = cgroup_bpf_inherit(cgrp);
- if (ret)
- goto out_psi_free;
+ if (cgrp->root == &cgrp_dfl_root) {
+ ret = cgroup_bpf_inherit(cgrp);
+ if (ret)
+ goto out_psi_free;
+ }
/*
* New cgroup inherits effective freeze counter, and
@@ -6026,7 +6028,8 @@ static int cgroup_destroy_locked(struct cgroup *cgrp)
cgroup1_check_for_release(parent);
- cgroup_bpf_offline(cgrp);
+ if (cgrp->root == &cgrp_dfl_root)
+ cgroup_bpf_offline(cgrp);
/* put the base reference */
percpu_ref_kill(&cgrp->self.refcnt);
@@ -6476,7 +6479,6 @@ static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
struct cgroup *dst_cgrp = NULL;
struct css_set *cset;
struct super_block *sb;
- struct file *f;
if (kargs->flags & CLONE_INTO_CGROUP)
cgroup_lock();
@@ -6493,14 +6495,14 @@ static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
return 0;
}
- f = fget_raw(kargs->cgroup);
- if (!f) {
+ CLASS(fd_raw, f)(kargs->cgroup);
+ if (fd_empty(f)) {
ret = -EBADF;
goto err;
}
- sb = f->f_path.dentry->d_sb;
+ sb = fd_file(f)->f_path.dentry->d_sb;
- dst_cgrp = cgroup_get_from_file(f);
+ dst_cgrp = cgroup_get_from_file(fd_file(f));
if (IS_ERR(dst_cgrp)) {
ret = PTR_ERR(dst_cgrp);
dst_cgrp = NULL;
@@ -6548,15 +6550,12 @@ static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
}
put_css_set(cset);
- fput(f);
kargs->cgrp = dst_cgrp;
return ret;
err:
cgroup_threadgroup_change_end(current);
cgroup_unlock();
- if (f)
- fput(f);
if (dst_cgrp)
cgroup_put(dst_cgrp);
put_css_set(cset);
@@ -6966,14 +6965,11 @@ EXPORT_SYMBOL_GPL(cgroup_get_from_path);
*/
struct cgroup *cgroup_v1v2_get_from_fd(int fd)
{
- struct cgroup *cgrp;
- struct fd f = fdget_raw(fd);
- if (!fd_file(f))
+ CLASS(fd_raw, f)(fd);
+ if (fd_empty(f))
return ERR_PTR(-EBADF);
- cgrp = cgroup_v1v2_get_from_file(fd_file(f));
- fdput(f);
- return cgrp;
+ return cgroup_v1v2_get_from_file(fd_file(f));
}
/**
diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c
index a4dd285cdf39..f321ed515f3a 100644
--- a/kernel/cgroup/cpuset.c
+++ b/kernel/cgroup/cpuset.c
@@ -84,9 +84,19 @@ static bool have_boot_isolcpus;
static struct list_head remote_children;
/*
- * A flag to force sched domain rebuild at the end of an operation while
- * inhibiting it in the intermediate stages when set. Currently it is only
- * set in hotplug code.
+ * A flag to force sched domain rebuild at the end of an operation.
+ * It can be set in
+ * - update_partition_sd_lb()
+ * - remote_partition_check()
+ * - update_cpumasks_hier()
+ * - cpuset_update_flag()
+ * - cpuset_hotplug_update_tasks()
+ * - cpuset_handle_hotplug()
+ *
+ * Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock.
+ *
+ * Note that update_relax_domain_level() in cpuset-v1.c can still call
+ * rebuild_sched_domains_locked() directly without using this flag.
*/
static bool force_sd_rebuild;
@@ -283,6 +293,12 @@ static inline void dec_attach_in_progress(struct cpuset *cs)
mutex_unlock(&cpuset_mutex);
}
+static inline bool cpuset_v2(void)
+{
+ return !IS_ENABLED(CONFIG_CPUSETS_V1) ||
+ cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
+}
+
/*
* Cgroup v2 behavior is used on the "cpus" and "mems" control files when
* on default hierarchy or when the cpuset_v2_mode flag is set by mounting
@@ -293,7 +309,7 @@ static inline void dec_attach_in_progress(struct cpuset *cs)
*/
static inline bool is_in_v2_mode(void)
{
- return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
+ return cpuset_v2() ||
(cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
}
@@ -565,12 +581,24 @@ static int validate_change(struct cpuset *cur, struct cpuset *trial)
/*
* We can't shrink if we won't have enough room for SCHED_DEADLINE
- * tasks.
+ * tasks. This check is not done when scheduling is disabled as the
+ * users should know what they are doing.
+ *
+ * For v1, effective_cpus == cpus_allowed & user_xcpus() returns
+ * cpus_allowed.
+ *
+ * For v2, is_cpu_exclusive() & is_sched_load_balance() are true only
+ * for non-isolated partition root. At this point, the target
+ * effective_cpus isn't computed yet. user_xcpus() is the best
+ * approximation.
+ *
+ * TBD: May need to precompute the real effective_cpus here in case
+ * incorrect scheduling of SCHED_DEADLINE tasks in a partition
+ * becomes an issue.
*/
ret = -EBUSY;
- if (is_cpu_exclusive(cur) &&
- !cpuset_cpumask_can_shrink(cur->cpus_allowed,
- trial->cpus_allowed))
+ if (is_cpu_exclusive(cur) && is_sched_load_balance(cur) &&
+ !cpuset_cpumask_can_shrink(cur->effective_cpus, user_xcpus(trial)))
goto out;
/*
@@ -728,7 +756,7 @@ static int generate_sched_domains(cpumask_var_t **domains,
int nslot; /* next empty doms[] struct cpumask slot */
struct cgroup_subsys_state *pos_css;
bool root_load_balance = is_sched_load_balance(&top_cpuset);
- bool cgrpv2 = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
+ bool cgrpv2 = cpuset_v2();
int nslot_update;
doms = NULL;
@@ -990,6 +1018,7 @@ void rebuild_sched_domains_locked(void)
lockdep_assert_cpus_held();
lockdep_assert_held(&cpuset_mutex);
+ force_sd_rebuild = false;
/*
* If we have raced with CPU hotplug, return early to avoid
@@ -1164,8 +1193,8 @@ static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}
- if (rebuild_domains && !force_sd_rebuild)
- rebuild_sched_domains_locked();
+ if (rebuild_domains)
+ cpuset_force_rebuild();
}
/*
@@ -1187,7 +1216,7 @@ static void reset_partition_data(struct cpuset *cs)
{
struct cpuset *parent = parent_cs(cs);
- if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
+ if (!cpuset_v2())
return;
lockdep_assert_held(&callback_lock);
@@ -1339,7 +1368,7 @@ static inline bool is_local_partition(struct cpuset *cs)
* remote_partition_enable - Enable current cpuset as a remote partition root
* @cs: the cpuset to update
* @new_prs: new partition_root_state
- * @tmp: temparary masks
+ * @tmp: temporary masks
* Return: 0 if successful, errcode if error
*
* Enable the current cpuset to become a remote partition root taking CPUs
@@ -1377,7 +1406,7 @@ static int remote_partition_enable(struct cpuset *cs, int new_prs,
update_unbound_workqueue_cpumask(isolcpus_updated);
/*
- * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
+ * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
*/
cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
update_sibling_cpumasks(&top_cpuset, NULL, tmp);
@@ -1387,7 +1416,7 @@ static int remote_partition_enable(struct cpuset *cs, int new_prs,
/*
* remote_partition_disable - Remove current cpuset from remote partition list
* @cs: the cpuset to update
- * @tmp: temparary masks
+ * @tmp: temporary masks
*
* The effective_cpus is also updated.
*
@@ -1413,7 +1442,7 @@ static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp)
update_unbound_workqueue_cpumask(isolcpus_updated);
/*
- * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
+ * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
*/
cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
update_sibling_cpumasks(&top_cpuset, NULL, tmp);
@@ -1423,7 +1452,7 @@ static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp)
* remote_cpus_update - cpus_exclusive change of remote partition
* @cs: the cpuset to be updated
* @newmask: the new effective_xcpus mask
- * @tmp: temparary masks
+ * @tmp: temporary masks
*
* top_cpuset and subpartitions_cpus will be updated or partition can be
* invalidated.
@@ -1465,7 +1494,7 @@ static void remote_cpus_update(struct cpuset *cs, struct cpumask *newmask,
update_unbound_workqueue_cpumask(isolcpus_updated);
/*
- * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
+ * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
*/
cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
update_sibling_cpumasks(&top_cpuset, NULL, tmp);
@@ -1480,7 +1509,7 @@ invalidate:
* @cs: the cpuset to be updated
* @newmask: the new effective_xcpus mask
* @delmask: temporary mask for deletion (not in tmp)
- * @tmp: temparary masks
+ * @tmp: temporary masks
*
* This should be called before the given cs has updated its cpus_allowed
* and/or effective_xcpus.
@@ -1512,8 +1541,8 @@ static void remote_partition_check(struct cpuset *cs, struct cpumask *newmask,
remote_partition_disable(child, tmp);
disable_cnt++;
}
- if (disable_cnt && !force_sd_rebuild)
- rebuild_sched_domains_locked();
+ if (disable_cnt)
+ cpuset_force_rebuild();
}
/*
@@ -1923,12 +1952,6 @@ static void compute_partition_effective_cpumask(struct cpuset *cs,
}
/*
- * update_cpumasks_hier() flags
- */
-#define HIER_CHECKALL 0x01 /* Check all cpusets with no skipping */
-#define HIER_NO_SD_REBUILD 0x02 /* Don't rebuild sched domains */
-
-/*
* update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
* @cs: the cpuset to consider
* @tmp: temp variables for calculating effective_cpus & partition setup
@@ -1942,7 +1965,7 @@ static void compute_partition_effective_cpumask(struct cpuset *cs,
* Called with cpuset_mutex held
*/
static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
- int flags)
+ bool force)
{
struct cpuset *cp;
struct cgroup_subsys_state *pos_css;
@@ -2007,12 +2030,12 @@ static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
* Skip the whole subtree if
* 1) the cpumask remains the same,
* 2) has no partition root state,
- * 3) HIER_CHECKALL flag not set, and
+ * 3) force flag not set, and
* 4) for v2 load balance state same as its parent.
*/
- if (!cp->partition_root_state && !(flags & HIER_CHECKALL) &&
+ if (!cp->partition_root_state && !force &&
cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
- (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
+ (!cpuset_v2() ||
(is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
pos_css = css_rightmost_descendant(pos_css);
continue;
@@ -2086,8 +2109,7 @@ get_css:
* from parent if current cpuset isn't a valid partition root
* and their load balance states differ.
*/
- if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
- !is_partition_valid(cp) &&
+ if (cpuset_v2() && !is_partition_valid(cp) &&
(is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
if (is_sched_load_balance(parent))
set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
@@ -2103,8 +2125,7 @@ get_css:
*/
if (!cpumask_empty(cp->cpus_allowed) &&
is_sched_load_balance(cp) &&
- (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
- is_partition_valid(cp)))
+ (!cpuset_v2() || is_partition_valid(cp)))
need_rebuild_sched_domains = true;
rcu_read_lock();
@@ -2112,9 +2133,8 @@ get_css:
}
rcu_read_unlock();
- if (need_rebuild_sched_domains && !(flags & HIER_NO_SD_REBUILD) &&
- !force_sd_rebuild)
- rebuild_sched_domains_locked();
+ if (need_rebuild_sched_domains)
+ cpuset_force_rebuild();
}
/**
@@ -2141,9 +2161,7 @@ static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
* directly.
*
* The update_cpumasks_hier() function may sleep. So we have to
- * release the RCU read lock before calling it. HIER_NO_SD_REBUILD
- * flag is used to suppress rebuild of sched domains as the callers
- * will take care of that.
+ * release the RCU read lock before calling it.
*/
rcu_read_lock();
cpuset_for_each_child(sibling, pos_css, parent) {
@@ -2159,7 +2177,7 @@ static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
continue;
rcu_read_unlock();
- update_cpumasks_hier(sibling, tmp, HIER_NO_SD_REBUILD);
+ update_cpumasks_hier(sibling, tmp, false);
rcu_read_lock();
css_put(&sibling->css);
}
@@ -2179,7 +2197,7 @@ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
struct tmpmasks tmp;
struct cpuset *parent = parent_cs(cs);
bool invalidate = false;
- int hier_flags = 0;
+ bool force = false;
int old_prs = cs->partition_root_state;
/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
@@ -2206,7 +2224,7 @@ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
return -EINVAL;
/*
- * When exclusive_cpus isn't explicitly set, it is constrainted
+ * When exclusive_cpus isn't explicitly set, it is constrained
* by cpus_allowed and parent's effective_xcpus. Otherwise,
* trialcs->effective_xcpus is used as a temporary cpumask
* for checking validity of the partition root.
@@ -2240,12 +2258,11 @@ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
* Check all the descendants in update_cpumasks_hier() if
* effective_xcpus is to be changed.
*/
- if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus))
- hier_flags = HIER_CHECKALL;
+ force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
retval = validate_change(cs, trialcs);
- if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
+ if ((retval == -EINVAL) && cpuset_v2()) {
struct cgroup_subsys_state *css;
struct cpuset *cp;
@@ -2309,7 +2326,7 @@ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
spin_unlock_irq(&callback_lock);
/* effective_cpus/effective_xcpus will be updated here */
- update_cpumasks_hier(cs, &tmp, hier_flags);
+ update_cpumasks_hier(cs, &tmp, force);
/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
if (cs->partition_root_state)
@@ -2334,7 +2351,7 @@ static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
struct tmpmasks tmp;
struct cpuset *parent = parent_cs(cs);
bool invalidate = false;
- int hier_flags = 0;
+ bool force = false;
int old_prs = cs->partition_root_state;
if (!*buf) {
@@ -2357,8 +2374,7 @@ static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
* Check all the descendants in update_cpumasks_hier() if
* effective_xcpus is to be changed.
*/
- if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus))
- hier_flags = HIER_CHECKALL;
+ force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
retval = validate_change(cs, trialcs);
if (retval)
@@ -2411,8 +2427,8 @@ static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
* of the subtree when it is a valid partition root or effective_xcpus
* is updated.
*/
- if (is_partition_valid(cs) || hier_flags)
- update_cpumasks_hier(cs, &tmp, hier_flags);
+ if (is_partition_valid(cs) || force)
+ update_cpumasks_hier(cs, &tmp, force);
/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
if (cs->partition_root_state)
@@ -2737,9 +2753,12 @@ int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
cs->flags = trialcs->flags;
spin_unlock_irq(&callback_lock);
- if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed &&
- !force_sd_rebuild)
- rebuild_sched_domains_locked();
+ if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) {
+ if (cpuset_v2())
+ cpuset_force_rebuild();
+ else
+ rebuild_sched_domains_locked();
+ }
if (spread_flag_changed)
cpuset1_update_tasks_flags(cs);
@@ -2853,12 +2872,14 @@ out:
update_unbound_workqueue_cpumask(new_xcpus_state);
/* Force update if switching back to member */
- update_cpumasks_hier(cs, &tmpmask, !new_prs ? HIER_CHECKALL : 0);
+ update_cpumasks_hier(cs, &tmpmask, !new_prs);
/* Update sched domains and load balance flag */
update_partition_sd_lb(cs, old_prs);
notify_partition_change(cs, old_prs);
+ if (force_sd_rebuild)
+ rebuild_sched_domains_locked();
free_cpumasks(NULL, &tmpmask);
return 0;
}
@@ -2919,8 +2940,7 @@ static int cpuset_can_attach(struct cgroup_taskset *tset)
* migration permission derives from hierarchy ownership in
* cgroup_procs_write_permission()).
*/
- if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
- (cpus_updated || mems_updated)) {
+ if (!cpuset_v2() || (cpus_updated || mems_updated)) {
ret = security_task_setscheduler(task);
if (ret)
goto out_unlock;
@@ -3034,8 +3054,7 @@ static void cpuset_attach(struct cgroup_taskset *tset)
* in effective cpus and mems. In that case, we can optimize out
* by skipping the task iteration and update.
*/
- if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
- !cpus_updated && !mems_updated) {
+ if (cpuset_v2() && !cpus_updated && !mems_updated) {
cpuset_attach_nodemask_to = cs->effective_mems;
goto out;
}
@@ -3152,6 +3171,8 @@ ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
}
free_cpuset(trialcs);
+ if (force_sd_rebuild)
+ rebuild_sched_domains_locked();
out_unlock:
mutex_unlock(&cpuset_mutex);
cpus_read_unlock();
@@ -3383,7 +3404,7 @@ cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
INIT_LIST_HEAD(&cs->remote_sibling);
/* Set CS_MEMORY_MIGRATE for default hierarchy */
- if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
+ if (cpuset_v2())
__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
return &cs->css;
@@ -3410,8 +3431,7 @@ static int cpuset_css_online(struct cgroup_subsys_state *css)
/*
* For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
*/
- if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
- !is_sched_load_balance(parent))
+ if (cpuset_v2() && !is_sched_load_balance(parent))
clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
cpuset_inc();
@@ -3481,8 +3501,7 @@ static void cpuset_css_offline(struct cgroup_subsys_state *css)
if (is_partition_valid(cs))
update_prstate(cs, 0);
- if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
- is_sched_load_balance(cs))
+ if (!cpuset_v2() && is_sched_load_balance(cs))
cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
cpuset_dec();
@@ -3896,11 +3915,9 @@ static void cpuset_handle_hotplug(void)
rcu_read_unlock();
}
- /* rebuild sched domains if cpus_allowed has changed */
- if (force_sd_rebuild) {
- force_sd_rebuild = false;
+ /* rebuild sched domains if necessary */
+ if (force_sd_rebuild)
rebuild_sched_domains_cpuslocked();
- }
free_cpumasks(NULL, ptmp);
}
diff --git a/kernel/cgroup/freezer.c b/kernel/cgroup/freezer.c
index 617861a54793..bf1690a167dd 100644
--- a/kernel/cgroup/freezer.c
+++ b/kernel/cgroup/freezer.c
@@ -9,6 +9,28 @@
#include <trace/events/cgroup.h>
/*
+ * Update CGRP_FROZEN of cgroup.flag
+ * Return true if flags is updated; false if flags has no change
+ */
+static bool cgroup_update_frozen_flag(struct cgroup *cgrp, bool frozen)
+{
+ lockdep_assert_held(&css_set_lock);
+
+ /* Already there? */
+ if (test_bit(CGRP_FROZEN, &cgrp->flags) == frozen)
+ return false;
+
+ if (frozen)
+ set_bit(CGRP_FROZEN, &cgrp->flags);
+ else
+ clear_bit(CGRP_FROZEN, &cgrp->flags);
+
+ cgroup_file_notify(&cgrp->events_file);
+ TRACE_CGROUP_PATH(notify_frozen, cgrp, frozen);
+ return true;
+}
+
+/*
* Propagate the cgroup frozen state upwards by the cgroup tree.
*/
static void cgroup_propagate_frozen(struct cgroup *cgrp, bool frozen)
@@ -24,24 +46,16 @@ static void cgroup_propagate_frozen(struct cgroup *cgrp, bool frozen)
while ((cgrp = cgroup_parent(cgrp))) {
if (frozen) {
cgrp->freezer.nr_frozen_descendants += desc;
- if (!test_bit(CGRP_FROZEN, &cgrp->flags) &&
- test_bit(CGRP_FREEZE, &cgrp->flags) &&
- cgrp->freezer.nr_frozen_descendants ==
- cgrp->nr_descendants) {
- set_bit(CGRP_FROZEN, &cgrp->flags);
- cgroup_file_notify(&cgrp->events_file);
- TRACE_CGROUP_PATH(notify_frozen, cgrp, 1);
- desc++;
- }
+ if (!test_bit(CGRP_FREEZE, &cgrp->flags) ||
+ (cgrp->freezer.nr_frozen_descendants !=
+ cgrp->nr_descendants))
+ continue;
} else {
cgrp->freezer.nr_frozen_descendants -= desc;
- if (test_bit(CGRP_FROZEN, &cgrp->flags)) {
- clear_bit(CGRP_FROZEN, &cgrp->flags);
- cgroup_file_notify(&cgrp->events_file);
- TRACE_CGROUP_PATH(notify_frozen, cgrp, 0);
- desc++;
- }
}
+
+ if (cgroup_update_frozen_flag(cgrp, frozen))
+ desc++;
}
}
@@ -53,8 +67,6 @@ void cgroup_update_frozen(struct cgroup *cgrp)
{
bool frozen;
- lockdep_assert_held(&css_set_lock);
-
/*
* If the cgroup has to be frozen (CGRP_FREEZE bit set),
* and all tasks are frozen and/or stopped, let's consider
@@ -63,24 +75,9 @@ void cgroup_update_frozen(struct cgroup *cgrp)
frozen = test_bit(CGRP_FREEZE, &cgrp->flags) &&
cgrp->freezer.nr_frozen_tasks == __cgroup_task_count(cgrp);
- if (frozen) {
- /* Already there? */
- if (test_bit(CGRP_FROZEN, &cgrp->flags))
- return;
-
- set_bit(CGRP_FROZEN, &cgrp->flags);
- } else {
- /* Already there? */
- if (!test_bit(CGRP_FROZEN, &cgrp->flags))
- return;
-
- clear_bit(CGRP_FROZEN, &cgrp->flags);
- }
- cgroup_file_notify(&cgrp->events_file);
- TRACE_CGROUP_PATH(notify_frozen, cgrp, frozen);
-
- /* Update the state of ancestor cgroups. */
- cgroup_propagate_frozen(cgrp, frozen);
+ /* If flags is updated, update the state of ancestor cgroups. */
+ if (cgroup_update_frozen_flag(cgrp, frozen))
+ cgroup_propagate_frozen(cgrp, frozen);
}
/*
@@ -260,8 +257,10 @@ void cgroup_freezer_migrate_task(struct task_struct *task,
void cgroup_freeze(struct cgroup *cgrp, bool freeze)
{
struct cgroup_subsys_state *css;
+ struct cgroup *parent;
struct cgroup *dsct;
bool applied = false;
+ bool old_e;
lockdep_assert_held(&cgroup_mutex);
@@ -282,22 +281,18 @@ void cgroup_freeze(struct cgroup *cgrp, bool freeze)
if (cgroup_is_dead(dsct))
continue;
- if (freeze) {
- dsct->freezer.e_freeze++;
- /*
- * Already frozen because of ancestor's settings?
- */
- if (dsct->freezer.e_freeze > 1)
- continue;
- } else {
- dsct->freezer.e_freeze--;
- /*
- * Still frozen because of ancestor's settings?
- */
- if (dsct->freezer.e_freeze > 0)
- continue;
-
- WARN_ON_ONCE(dsct->freezer.e_freeze < 0);
+ /*
+ * e_freeze is affected by parent's e_freeze and dst's freeze.
+ * If old e_freeze eq new e_freeze, no change, its children
+ * will not be affected. So do nothing and skip the subtree
+ */
+ old_e = dsct->freezer.e_freeze;
+ parent = cgroup_parent(dsct);
+ dsct->freezer.e_freeze = (dsct->freezer.freeze ||
+ parent->freezer.e_freeze);
+ if (dsct->freezer.e_freeze == old_e) {
+ css = css_rightmost_descendant(css);
+ continue;
}
/*
diff --git a/kernel/cgroup/rstat.c b/kernel/cgroup/rstat.c
index a06b45272411..5877974ece92 100644
--- a/kernel/cgroup/rstat.c
+++ b/kernel/cgroup/rstat.c
@@ -444,6 +444,7 @@ static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat,
#ifdef CONFIG_SCHED_CORE
dst_bstat->forceidle_sum += src_bstat->forceidle_sum;
#endif
+ dst_bstat->ntime += src_bstat->ntime;
}
static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat,
@@ -455,6 +456,7 @@ static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat,
#ifdef CONFIG_SCHED_CORE
dst_bstat->forceidle_sum -= src_bstat->forceidle_sum;
#endif
+ dst_bstat->ntime -= src_bstat->ntime;
}
static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu)
@@ -534,8 +536,10 @@ void __cgroup_account_cputime_field(struct cgroup *cgrp,
rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
switch (index) {
- case CPUTIME_USER:
case CPUTIME_NICE:
+ rstatc->bstat.ntime += delta_exec;
+ fallthrough;
+ case CPUTIME_USER:
rstatc->bstat.cputime.utime += delta_exec;
break;
case CPUTIME_SYSTEM:
@@ -591,6 +595,7 @@ static void root_cgroup_cputime(struct cgroup_base_stat *bstat)
#ifdef CONFIG_SCHED_CORE
bstat->forceidle_sum += cpustat[CPUTIME_FORCEIDLE];
#endif
+ bstat->ntime += cpustat[CPUTIME_NICE];
}
}
@@ -608,13 +613,14 @@ static void cgroup_force_idle_show(struct seq_file *seq, struct cgroup_base_stat
void cgroup_base_stat_cputime_show(struct seq_file *seq)
{
struct cgroup *cgrp = seq_css(seq)->cgroup;
- u64 usage, utime, stime;
+ u64 usage, utime, stime, ntime;
if (cgroup_parent(cgrp)) {
cgroup_rstat_flush_hold(cgrp);
usage = cgrp->bstat.cputime.sum_exec_runtime;
cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime,
&utime, &stime);
+ ntime = cgrp->bstat.ntime;
cgroup_rstat_flush_release(cgrp);
} else {
/* cgrp->bstat of root is not actually used, reuse it */
@@ -622,16 +628,19 @@ void cgroup_base_stat_cputime_show(struct seq_file *seq)
usage = cgrp->bstat.cputime.sum_exec_runtime;
utime = cgrp->bstat.cputime.utime;
stime = cgrp->bstat.cputime.stime;
+ ntime = cgrp->bstat.ntime;
}
do_div(usage, NSEC_PER_USEC);
do_div(utime, NSEC_PER_USEC);
do_div(stime, NSEC_PER_USEC);
+ do_div(ntime, NSEC_PER_USEC);
seq_printf(seq, "usage_usec %llu\n"
- "user_usec %llu\n"
- "system_usec %llu\n",
- usage, utime, stime);
+ "user_usec %llu\n"
+ "system_usec %llu\n"
+ "nice_usec %llu\n",
+ usage, utime, stime, ntime);
cgroup_force_idle_show(seq, &cgrp->bstat);
}
diff --git a/kernel/configs/debug.config b/kernel/configs/debug.config
index 509ee703de15..20552f163930 100644
--- a/kernel/configs/debug.config
+++ b/kernel/configs/debug.config
@@ -103,6 +103,7 @@ CONFIG_BUG_ON_DATA_CORRUPTION=y
#
# RCU Debugging
#
+CONFIG_RCU_EXPERT=y
CONFIG_PROVE_RCU=y
CONFIG_PROVE_RCU_LIST=y
#
diff --git a/kernel/cpu.c b/kernel/cpu.c
index d293d52a3e00..6e34b52cb5ce 100644
--- a/kernel/cpu.c
+++ b/kernel/cpu.c
@@ -1338,7 +1338,7 @@ static int takedown_cpu(unsigned int cpu)
cpuhp_bp_sync_dead(cpu);
- tick_cleanup_dead_cpu(cpu);
+ lockdep_cleanup_dead_cpu(cpu, idle_thread_get(cpu));
/*
* Callbacks must be re-integrated right away to the RCU state machine.
diff --git a/kernel/cred.c b/kernel/cred.c
index 075cfa7c896f..da7da250f7c8 100644
--- a/kernel/cred.c
+++ b/kernel/cred.c
@@ -485,7 +485,7 @@ EXPORT_SYMBOL(abort_creds);
*/
const struct cred *override_creds(const struct cred *new)
{
- const struct cred *old = current->cred;
+ const struct cred *old;
kdebug("override_creds(%p{%ld})", new,
atomic_long_read(&new->usage));
@@ -499,7 +499,7 @@ const struct cred *override_creds(const struct cred *new)
* visible to other threads under RCU.
*/
get_new_cred((struct cred *)new);
- rcu_assign_pointer(current->cred, new);
+ old = override_creds_light(new);
kdebug("override_creds() = %p{%ld}", old,
atomic_long_read(&old->usage));
@@ -521,7 +521,7 @@ void revert_creds(const struct cred *old)
kdebug("revert_creds(%p{%ld})", old,
atomic_long_read(&old->usage));
- rcu_assign_pointer(current->cred, old);
+ revert_creds_light(old);
put_cred(override);
}
EXPORT_SYMBOL(revert_creds);
diff --git a/kernel/debug/kdb/kdb_bp.c b/kernel/debug/kdb/kdb_bp.c
index 372025cf1ca3..c0c2072f5452 100644
--- a/kernel/debug/kdb/kdb_bp.c
+++ b/kernel/debug/kdb/kdb_bp.c
@@ -460,13 +460,15 @@ static int kdb_bc(int argc, const char **argv)
break;
case KDBCMD_BE:
+ if (bp->bp_enabled)
+ break;
+
bp->bp_enabled = 1;
kdb_printf("Breakpoint %d at "
- kdb_bfd_vma_fmt " enabled",
+ kdb_bfd_vma_fmt " enabled\n",
i, bp->bp_addr);
- kdb_printf("\n");
break;
case KDBCMD_BD:
if (!bp->bp_enabled)
diff --git a/kernel/debug/kdb/kdb_keyboard.c b/kernel/debug/kdb/kdb_keyboard.c
index 3c2987f46f6e..3a74604fdb8a 100644
--- a/kernel/debug/kdb/kdb_keyboard.c
+++ b/kernel/debug/kdb/kdb_keyboard.c
@@ -25,6 +25,8 @@
#define KBD_STAT_OBF 0x01 /* Keyboard output buffer full */
#define KBD_STAT_MOUSE_OBF 0x20 /* Mouse output buffer full */
+#define CTRL(c) ((c) - 64)
+
static int kbd_exists;
static int kbd_last_ret;
@@ -123,24 +125,24 @@ int kdb_get_kbd_char(void)
return 8;
}
- /* Special Key */
+ /* Translate special keys to equivalent CTRL control characters */
switch (scancode) {
case 0xF: /* Tab */
- return 9;
+ return CTRL('I');
case 0x53: /* Del */
- return 4;
+ return CTRL('D');
case 0x47: /* Home */
- return 1;
+ return CTRL('A');
case 0x4F: /* End */
- return 5;
+ return CTRL('E');
case 0x4B: /* Left */
- return 2;
+ return CTRL('B');
case 0x48: /* Up */
- return 16;
+ return CTRL('P');
case 0x50: /* Down */
- return 14;
+ return CTRL('N');
case 0x4D: /* Right */
- return 6;
+ return CTRL('F');
}
if (scancode == 0xe0)
@@ -172,6 +174,19 @@ int kdb_get_kbd_char(void)
switch (KTYP(keychar)) {
case KT_LETTER:
case KT_LATIN:
+ switch (keychar) {
+ /* non-printable supported control characters */
+ case CTRL('A'): /* Home */
+ case CTRL('B'): /* Left */
+ case CTRL('D'): /* Del */
+ case CTRL('E'): /* End */
+ case CTRL('F'): /* Right */
+ case CTRL('I'): /* Tab */
+ case CTRL('N'): /* Down */
+ case CTRL('P'): /* Up */
+ return keychar;
+ }
+
if (isprint(keychar))
break; /* printable characters */
fallthrough;
diff --git a/kernel/debug/kdb/kdb_main.c b/kernel/debug/kdb/kdb_main.c
index f5f7d7fb5936..5f4be507d79f 100644
--- a/kernel/debug/kdb/kdb_main.c
+++ b/kernel/debug/kdb/kdb_main.c
@@ -306,8 +306,8 @@ static int kdbgetulenv(const char *match, unsigned long *value)
return KDB_NOTENV;
if (strlen(ep) == 0)
return KDB_NOENVVALUE;
-
- *value = simple_strtoul(ep, NULL, 0);
+ if (kstrtoul(ep, 0, value))
+ return KDB_BADINT;
return 0;
}
@@ -402,42 +402,15 @@ static void kdb_printenv(void)
*/
int kdbgetularg(const char *arg, unsigned long *value)
{
- char *endp;
- unsigned long val;
-
- val = simple_strtoul(arg, &endp, 0);
-
- if (endp == arg) {
- /*
- * Also try base 16, for us folks too lazy to type the
- * leading 0x...
- */
- val = simple_strtoul(arg, &endp, 16);
- if (endp == arg)
- return KDB_BADINT;
- }
-
- *value = val;
-
+ if (kstrtoul(arg, 0, value))
+ return KDB_BADINT;
return 0;
}
int kdbgetu64arg(const char *arg, u64 *value)
{
- char *endp;
- u64 val;
-
- val = simple_strtoull(arg, &endp, 0);
-
- if (endp == arg) {
-
- val = simple_strtoull(arg, &endp, 16);
- if (endp == arg)
- return KDB_BADINT;
- }
-
- *value = val;
-
+ if (kstrtou64(arg, 0, value))
+ return KDB_BADINT;
return 0;
}
@@ -473,10 +446,10 @@ int kdb_set(int argc, const char **argv)
*/
if (strcmp(argv[1], "KDBDEBUG") == 0) {
unsigned int debugflags;
- char *cp;
+ int ret;
- debugflags = simple_strtoul(argv[2], &cp, 0);
- if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
+ ret = kstrtouint(argv[2], 0, &debugflags);
+ if (ret || debugflags & ~KDB_DEBUG_FLAG_MASK) {
kdb_printf("kdb: illegal debug flags '%s'\n",
argv[2]);
return 0;
@@ -1619,10 +1592,10 @@ static int kdb_md(int argc, const char **argv)
if (!argv[0][3])
valid = 1;
else if (argv[0][3] == 'c' && argv[0][4]) {
- char *p;
- repeat = simple_strtoul(argv[0] + 4, &p, 10);
+ if (kstrtouint(argv[0] + 4, 10, &repeat))
+ return KDB_BADINT;
mdcount = ((repeat * bytesperword) + 15) / 16;
- valid = !*p;
+ valid = 1;
}
last_repeat = repeat;
} else if (strcmp(argv[0], "md") == 0)
@@ -2083,15 +2056,10 @@ static int kdb_dmesg(int argc, const char **argv)
if (argc > 2)
return KDB_ARGCOUNT;
if (argc) {
- char *cp;
- lines = simple_strtol(argv[1], &cp, 0);
- if (*cp)
+ if (kstrtoint(argv[1], 0, &lines))
lines = 0;
- if (argc > 1) {
- adjust = simple_strtoul(argv[2], &cp, 0);
- if (*cp || adjust < 0)
- adjust = 0;
- }
+ if (argc > 1 && (kstrtoint(argv[2], 0, &adjust) || adjust < 0))
+ adjust = 0;
}
/* disable LOGGING if set */
@@ -2428,14 +2396,12 @@ static int kdb_help(int argc, const char **argv)
static int kdb_kill(int argc, const char **argv)
{
long sig, pid;
- char *endp;
struct task_struct *p;
if (argc != 2)
return KDB_ARGCOUNT;
- sig = simple_strtol(argv[1], &endp, 0);
- if (*endp)
+ if (kstrtol(argv[1], 0, &sig))
return KDB_BADINT;
if ((sig >= 0) || !valid_signal(-sig)) {
kdb_printf("Invalid signal parameter.<-signal>\n");
@@ -2443,8 +2409,7 @@ static int kdb_kill(int argc, const char **argv)
}
sig = -sig;
- pid = simple_strtol(argv[2], &endp, 0);
- if (*endp)
+ if (kstrtol(argv[2], 0, &pid))
return KDB_BADINT;
if (pid <= 0) {
kdb_printf("Process ID must be large than 0.\n");
diff --git a/kernel/dma/Kconfig b/kernel/dma/Kconfig
index 4c0dcd909121..31cfdb6b4bc3 100644
--- a/kernel/dma/Kconfig
+++ b/kernel/dma/Kconfig
@@ -260,23 +260,6 @@ config DMA_API_DEBUG
If unsure, say N.
-config DMA_API_DEBUG_SG
- bool "Debug DMA scatter-gather usage"
- default y
- depends on DMA_API_DEBUG
- help
- Perform extra checking that callers of dma_map_sg() have respected the
- appropriate segment length/boundary limits for the given device when
- preparing DMA scatterlists.
-
- This is particularly likely to have been overlooked in cases where the
- dma_map_sg() API is used for general bulk mapping of pages rather than
- preparing literal scatter-gather descriptors, where there is a risk of
- unexpected behaviour from DMA API implementations if the scatterlist
- is technically out-of-spec.
-
- If unsure, say N.
-
config DMA_MAP_BENCHMARK
bool "Enable benchmarking of streaming DMA mapping"
depends on DEBUG_FS
diff --git a/kernel/dma/coherent.c b/kernel/dma/coherent.c
index ff5683a57f77..3b2bdca9f1d4 100644
--- a/kernel/dma/coherent.c
+++ b/kernel/dma/coherent.c
@@ -330,7 +330,8 @@ int dma_init_global_coherent(phys_addr_t phys_addr, size_t size)
#include <linux/of_reserved_mem.h>
#ifdef CONFIG_DMA_GLOBAL_POOL
-static struct reserved_mem *dma_reserved_default_memory __initdata;
+static phys_addr_t dma_reserved_default_memory_base __initdata;
+static phys_addr_t dma_reserved_default_memory_size __initdata;
#endif
static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
@@ -376,9 +377,10 @@ static int __init rmem_dma_setup(struct reserved_mem *rmem)
#ifdef CONFIG_DMA_GLOBAL_POOL
if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) {
- WARN(dma_reserved_default_memory,
+ WARN(dma_reserved_default_memory_size,
"Reserved memory: region for default DMA coherent area is redefined\n");
- dma_reserved_default_memory = rmem;
+ dma_reserved_default_memory_base = rmem->base;
+ dma_reserved_default_memory_size = rmem->size;
}
#endif
@@ -391,10 +393,10 @@ static int __init rmem_dma_setup(struct reserved_mem *rmem)
#ifdef CONFIG_DMA_GLOBAL_POOL
static int __init dma_init_reserved_memory(void)
{
- if (!dma_reserved_default_memory)
+ if (!dma_reserved_default_memory_size)
return -ENOMEM;
- return dma_init_global_coherent(dma_reserved_default_memory->base,
- dma_reserved_default_memory->size);
+ return dma_init_global_coherent(dma_reserved_default_memory_base,
+ dma_reserved_default_memory_size);
}
core_initcall(dma_init_reserved_memory);
#endif /* CONFIG_DMA_GLOBAL_POOL */
diff --git a/kernel/dma/debug.c b/kernel/dma/debug.c
index d570535342cb..295396226f31 100644
--- a/kernel/dma/debug.c
+++ b/kernel/dma/debug.c
@@ -59,8 +59,7 @@ enum map_err_types {
* @direction: enum dma_data_direction
* @sg_call_ents: 'nents' from dma_map_sg
* @sg_mapped_ents: 'mapped_ents' from dma_map_sg
- * @pfn: page frame of the start address
- * @offset: offset of mapping relative to pfn
+ * @paddr: physical start address of the mapping
* @map_err_type: track whether dma_mapping_error() was checked
* @stack_len: number of backtrace entries in @stack_entries
* @stack_entries: stack of backtrace history
@@ -74,8 +73,7 @@ struct dma_debug_entry {
int direction;
int sg_call_ents;
int sg_mapped_ents;
- unsigned long pfn;
- size_t offset;
+ phys_addr_t paddr;
enum map_err_types map_err_type;
#ifdef CONFIG_STACKTRACE
unsigned int stack_len;
@@ -389,14 +387,6 @@ static void hash_bucket_del(struct dma_debug_entry *entry)
list_del(&entry->list);
}
-static unsigned long long phys_addr(struct dma_debug_entry *entry)
-{
- if (entry->type == dma_debug_resource)
- return __pfn_to_phys(entry->pfn) + entry->offset;
-
- return page_to_phys(pfn_to_page(entry->pfn)) + entry->offset;
-}
-
/*
* For each mapping (initial cacheline in the case of
* dma_alloc_coherent/dma_map_page, initial cacheline in each page of a
@@ -428,8 +418,8 @@ static DEFINE_SPINLOCK(radix_lock);
static phys_addr_t to_cacheline_number(struct dma_debug_entry *entry)
{
- return (entry->pfn << CACHELINE_PER_PAGE_SHIFT) +
- (entry->offset >> L1_CACHE_SHIFT);
+ return ((entry->paddr >> PAGE_SHIFT) << CACHELINE_PER_PAGE_SHIFT) +
+ (offset_in_page(entry->paddr) >> L1_CACHE_SHIFT);
}
static int active_cacheline_read_overlap(phys_addr_t cln)
@@ -538,11 +528,11 @@ void debug_dma_dump_mappings(struct device *dev)
if (!dev || dev == entry->dev) {
cln = to_cacheline_number(entry);
dev_info(entry->dev,
- "%s idx %d P=%llx N=%lx D=%llx L=%llx cln=%pa %s %s\n",
+ "%s idx %d P=%pa D=%llx L=%llx cln=%pa %s %s\n",
type2name[entry->type], idx,
- phys_addr(entry), entry->pfn,
- entry->dev_addr, entry->size,
- &cln, dir2name[entry->direction],
+ &entry->paddr, entry->dev_addr,
+ entry->size, &cln,
+ dir2name[entry->direction],
maperr2str[entry->map_err_type]);
}
}
@@ -569,13 +559,13 @@ static int dump_show(struct seq_file *seq, void *v)
list_for_each_entry(entry, &bucket->list, list) {
cln = to_cacheline_number(entry);
seq_printf(seq,
- "%s %s %s idx %d P=%llx N=%lx D=%llx L=%llx cln=%pa %s %s\n",
+ "%s %s %s idx %d P=%pa D=%llx L=%llx cln=%pa %s %s\n",
dev_driver_string(entry->dev),
dev_name(entry->dev),
type2name[entry->type], idx,
- phys_addr(entry), entry->pfn,
- entry->dev_addr, entry->size,
- &cln, dir2name[entry->direction],
+ &entry->paddr, entry->dev_addr,
+ entry->size, &cln,
+ dir2name[entry->direction],
maperr2str[entry->map_err_type]);
}
spin_unlock_irqrestore(&bucket->lock, flags);
@@ -1003,16 +993,16 @@ static void check_unmap(struct dma_debug_entry *ref)
"[mapped as %s] [unmapped as %s]\n",
ref->dev_addr, ref->size,
type2name[entry->type], type2name[ref->type]);
- } else if ((entry->type == dma_debug_coherent) &&
- (phys_addr(ref) != phys_addr(entry))) {
+ } else if (entry->type == dma_debug_coherent &&
+ ref->paddr != entry->paddr) {
err_printk(ref->dev, entry, "device driver frees "
"DMA memory with different CPU address "
"[device address=0x%016llx] [size=%llu bytes] "
- "[cpu alloc address=0x%016llx] "
- "[cpu free address=0x%016llx]",
+ "[cpu alloc address=0x%pa] "
+ "[cpu free address=0x%pa]",
ref->dev_addr, ref->size,
- phys_addr(entry),
- phys_addr(ref));
+ &entry->paddr,
+ &ref->paddr);
}
if (ref->sg_call_ents && ref->type == dma_debug_sg &&
@@ -1052,9 +1042,13 @@ static void check_unmap(struct dma_debug_entry *ref)
}
hash_bucket_del(entry);
- dma_entry_free(entry);
-
put_hash_bucket(bucket, flags);
+
+ /*
+ * Free the entry outside of bucket_lock to avoid ABBA deadlocks
+ * between that and radix_lock.
+ */
+ dma_entry_free(entry);
}
static void check_for_stack(struct device *dev,
@@ -1169,7 +1163,6 @@ out:
static void check_sg_segment(struct device *dev, struct scatterlist *sg)
{
-#ifdef CONFIG_DMA_API_DEBUG_SG
unsigned int max_seg = dma_get_max_seg_size(dev);
u64 start, end, boundary = dma_get_seg_boundary(dev);
@@ -1190,7 +1183,6 @@ static void check_sg_segment(struct device *dev, struct scatterlist *sg)
if ((start ^ end) & ~boundary)
err_printk(dev, NULL, "mapping sg segment across boundary [start=0x%016llx] [end=0x%016llx] [boundary=0x%016llx]\n",
start, end, boundary);
-#endif
}
void debug_dma_map_single(struct device *dev, const void *addr,
@@ -1227,8 +1219,7 @@ void debug_dma_map_page(struct device *dev, struct page *page, size_t offset,
entry->dev = dev;
entry->type = dma_debug_single;
- entry->pfn = page_to_pfn(page);
- entry->offset = offset;
+ entry->paddr = page_to_phys(page);
entry->dev_addr = dma_addr;
entry->size = size;
entry->direction = direction;
@@ -1323,8 +1314,7 @@ void debug_dma_map_sg(struct device *dev, struct scatterlist *sg,
entry->type = dma_debug_sg;
entry->dev = dev;
- entry->pfn = page_to_pfn(sg_page(s));
- entry->offset = s->offset;
+ entry->paddr = sg_phys(s);
entry->size = sg_dma_len(s);
entry->dev_addr = sg_dma_address(s);
entry->direction = direction;
@@ -1370,8 +1360,7 @@ void debug_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
struct dma_debug_entry ref = {
.type = dma_debug_sg,
.dev = dev,
- .pfn = page_to_pfn(sg_page(s)),
- .offset = s->offset,
+ .paddr = sg_phys(s),
.dev_addr = sg_dma_address(s),
.size = sg_dma_len(s),
.direction = dir,
@@ -1410,16 +1399,12 @@ void debug_dma_alloc_coherent(struct device *dev, size_t size,
entry->type = dma_debug_coherent;
entry->dev = dev;
- entry->offset = offset_in_page(virt);
+ entry->paddr = page_to_phys((is_vmalloc_addr(virt) ?
+ vmalloc_to_page(virt) : virt_to_page(virt)));
entry->size = size;
entry->dev_addr = dma_addr;
entry->direction = DMA_BIDIRECTIONAL;
- if (is_vmalloc_addr(virt))
- entry->pfn = vmalloc_to_pfn(virt);
- else
- entry->pfn = page_to_pfn(virt_to_page(virt));
-
add_dma_entry(entry, attrs);
}
@@ -1429,7 +1414,6 @@ void debug_dma_free_coherent(struct device *dev, size_t size,
struct dma_debug_entry ref = {
.type = dma_debug_coherent,
.dev = dev,
- .offset = offset_in_page(virt),
.dev_addr = dma_addr,
.size = size,
.direction = DMA_BIDIRECTIONAL,
@@ -1439,10 +1423,8 @@ void debug_dma_free_coherent(struct device *dev, size_t size,
if (!is_vmalloc_addr(virt) && !virt_addr_valid(virt))
return;
- if (is_vmalloc_addr(virt))
- ref.pfn = vmalloc_to_pfn(virt);
- else
- ref.pfn = page_to_pfn(virt_to_page(virt));
+ ref.paddr = page_to_phys((is_vmalloc_addr(virt) ?
+ vmalloc_to_page(virt) : virt_to_page(virt)));
if (unlikely(dma_debug_disabled()))
return;
@@ -1465,8 +1447,7 @@ void debug_dma_map_resource(struct device *dev, phys_addr_t addr, size_t size,
entry->type = dma_debug_resource;
entry->dev = dev;
- entry->pfn = PHYS_PFN(addr);
- entry->offset = offset_in_page(addr);
+ entry->paddr = addr;
entry->size = size;
entry->dev_addr = dma_addr;
entry->direction = direction;
@@ -1543,8 +1524,7 @@ void debug_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
struct dma_debug_entry ref = {
.type = dma_debug_sg,
.dev = dev,
- .pfn = page_to_pfn(sg_page(s)),
- .offset = s->offset,
+ .paddr = sg_phys(s),
.dev_addr = sg_dma_address(s),
.size = sg_dma_len(s),
.direction = direction,
@@ -1575,8 +1555,7 @@ void debug_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
struct dma_debug_entry ref = {
.type = dma_debug_sg,
.dev = dev,
- .pfn = page_to_pfn(sg_page(s)),
- .offset = s->offset,
+ .paddr = sg_phys(sg),
.dev_addr = sg_dma_address(s),
.size = sg_dma_len(s),
.direction = direction,
diff --git a/kernel/dma/mapping.c b/kernel/dma/mapping.c
index 864a1121bf08..cda127027e48 100644
--- a/kernel/dma/mapping.c
+++ b/kernel/dma/mapping.c
@@ -223,6 +223,7 @@ static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
} else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
ents != -EIO && ents != -EREMOTEIO)) {
+ trace_dma_map_sg_err(dev, sg, nents, ents, dir, attrs);
return -EIO;
}
@@ -604,22 +605,29 @@ void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
if (WARN_ON_ONCE(flag & __GFP_COMP))
return NULL;
- if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
+ if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) {
+ trace_dma_alloc(dev, cpu_addr, *dma_handle, size,
+ DMA_BIDIRECTIONAL, flag, attrs);
return cpu_addr;
+ }
/* let the implementation decide on the zone to allocate from: */
flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
- if (dma_alloc_direct(dev, ops))
+ if (dma_alloc_direct(dev, ops)) {
cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
- else if (use_dma_iommu(dev))
+ } else if (use_dma_iommu(dev)) {
cpu_addr = iommu_dma_alloc(dev, size, dma_handle, flag, attrs);
- else if (ops->alloc)
+ } else if (ops->alloc) {
cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
- else
+ } else {
+ trace_dma_alloc(dev, NULL, 0, size, DMA_BIDIRECTIONAL, flag,
+ attrs);
return NULL;
+ }
- trace_dma_alloc(dev, cpu_addr, *dma_handle, size, flag, attrs);
+ trace_dma_alloc(dev, cpu_addr, *dma_handle, size, DMA_BIDIRECTIONAL,
+ flag, attrs);
debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
return cpu_addr;
}
@@ -641,10 +649,11 @@ void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
*/
WARN_ON(irqs_disabled());
+ trace_dma_free(dev, cpu_addr, dma_handle, size, DMA_BIDIRECTIONAL,
+ attrs);
if (!cpu_addr)
return;
- trace_dma_free(dev, cpu_addr, dma_handle, size, attrs);
debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
if (dma_alloc_direct(dev, ops))
dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
@@ -683,9 +692,11 @@ struct page *dma_alloc_pages(struct device *dev, size_t size,
struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
if (page) {
- trace_dma_map_page(dev, page_to_phys(page), *dma_handle, size,
- dir, 0);
+ trace_dma_alloc_pages(dev, page_to_virt(page), *dma_handle,
+ size, dir, gfp, 0);
debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
+ } else {
+ trace_dma_alloc_pages(dev, NULL, 0, size, dir, gfp, 0);
}
return page;
}
@@ -708,7 +719,7 @@ static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
void dma_free_pages(struct device *dev, size_t size, struct page *page,
dma_addr_t dma_handle, enum dma_data_direction dir)
{
- trace_dma_unmap_page(dev, dma_handle, size, dir, 0);
+ trace_dma_free_pages(dev, page_to_virt(page), dma_handle, size, dir, 0);
debug_dma_unmap_page(dev, dma_handle, size, dir);
__dma_free_pages(dev, size, page, dma_handle, dir);
}
@@ -768,8 +779,10 @@ struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
if (sgt) {
sgt->nents = 1;
- trace_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
+ trace_dma_alloc_sgt(dev, sgt, size, dir, gfp, attrs);
debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
+ } else {
+ trace_dma_alloc_sgt_err(dev, NULL, 0, size, dir, gfp, attrs);
}
return sgt;
}
@@ -787,7 +800,7 @@ static void free_single_sgt(struct device *dev, size_t size,
void dma_free_noncontiguous(struct device *dev, size_t size,
struct sg_table *sgt, enum dma_data_direction dir)
{
- trace_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir, 0);
+ trace_dma_free_sgt(dev, sgt, size, dir);
debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
if (use_dma_iommu(dev))
diff --git a/kernel/entry/common.c b/kernel/entry/common.c
index 5b6934e23c21..e33691d5adf7 100644
--- a/kernel/entry/common.c
+++ b/kernel/entry/common.c
@@ -98,7 +98,7 @@ __always_inline unsigned long exit_to_user_mode_loop(struct pt_regs *regs,
local_irq_enable_exit_to_user(ti_work);
- if (ti_work & _TIF_NEED_RESCHED)
+ if (ti_work & (_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY))
schedule();
if (ti_work & _TIF_UPROBE)
diff --git a/kernel/entry/kvm.c b/kernel/entry/kvm.c
index 2e0f75bcb7fd..8485f63863af 100644
--- a/kernel/entry/kvm.c
+++ b/kernel/entry/kvm.c
@@ -13,7 +13,7 @@ static int xfer_to_guest_mode_work(struct kvm_vcpu *vcpu, unsigned long ti_work)
return -EINTR;
}
- if (ti_work & _TIF_NEED_RESCHED)
+ if (ti_work & (_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY))
schedule();
if (ti_work & _TIF_NOTIFY_RESUME)
@@ -24,7 +24,7 @@ static int xfer_to_guest_mode_work(struct kvm_vcpu *vcpu, unsigned long ti_work)
return ret;
ti_work = read_thread_flags();
- } while (ti_work & XFER_TO_GUEST_MODE_WORK || need_resched());
+ } while (ti_work & XFER_TO_GUEST_MODE_WORK);
return 0;
}
diff --git a/kernel/events/core.c b/kernel/events/core.c
index df27d08a7232..5d4a54f50826 100644
--- a/kernel/events/core.c
+++ b/kernel/events/core.c
@@ -966,22 +966,20 @@ static inline int perf_cgroup_connect(int fd, struct perf_event *event,
{
struct perf_cgroup *cgrp;
struct cgroup_subsys_state *css;
- struct fd f = fdget(fd);
+ CLASS(fd, f)(fd);
int ret = 0;
- if (!fd_file(f))
+ if (fd_empty(f))
return -EBADF;
css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
&perf_event_cgrp_subsys);
- if (IS_ERR(css)) {
- ret = PTR_ERR(css);
- goto out;
- }
+ if (IS_ERR(css))
+ return PTR_ERR(css);
ret = perf_cgroup_ensure_storage(event, css);
if (ret)
- goto out;
+ return ret;
cgrp = container_of(css, struct perf_cgroup, css);
event->cgrp = cgrp;
@@ -995,8 +993,6 @@ static inline int perf_cgroup_connect(int fd, struct perf_event *event,
perf_detach_cgroup(event);
ret = -EINVAL;
}
-out:
- fdput(f);
return ret;
}
@@ -2146,7 +2142,7 @@ static void perf_put_aux_event(struct perf_event *event)
static bool perf_need_aux_event(struct perf_event *event)
{
- return !!event->attr.aux_output || !!event->attr.aux_sample_size;
+ return event->attr.aux_output || has_aux_action(event);
}
static int perf_get_aux_event(struct perf_event *event,
@@ -2171,6 +2167,10 @@ static int perf_get_aux_event(struct perf_event *event,
!perf_aux_output_match(event, group_leader))
return 0;
+ if ((event->attr.aux_pause || event->attr.aux_resume) &&
+ !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
+ return 0;
+
if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
return 0;
@@ -5998,18 +5998,9 @@ EXPORT_SYMBOL_GPL(perf_event_period);
static const struct file_operations perf_fops;
-static inline int perf_fget_light(int fd, struct fd *p)
+static inline bool is_perf_file(struct fd f)
{
- struct fd f = fdget(fd);
- if (!fd_file(f))
- return -EBADF;
-
- if (fd_file(f)->f_op != &perf_fops) {
- fdput(f);
- return -EBADF;
- }
- *p = f;
- return 0;
+ return !fd_empty(f) && fd_file(f)->f_op == &perf_fops;
}
static int perf_event_set_output(struct perf_event *event,
@@ -6057,20 +6048,14 @@ static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned lon
case PERF_EVENT_IOC_SET_OUTPUT:
{
- int ret;
+ CLASS(fd, output)(arg); // arg == -1 => empty
+ struct perf_event *output_event = NULL;
if (arg != -1) {
- struct perf_event *output_event;
- struct fd output;
- ret = perf_fget_light(arg, &output);
- if (ret)
- return ret;
+ if (!is_perf_file(output))
+ return -EBADF;
output_event = fd_file(output)->private_data;
- ret = perf_event_set_output(event, output_event);
- fdput(output);
- } else {
- ret = perf_event_set_output(event, NULL);
}
- return ret;
+ return perf_event_set_output(event, output_event);
}
case PERF_EVENT_IOC_SET_FILTER:
@@ -7022,6 +7007,29 @@ void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
#endif
+static bool should_sample_guest(struct perf_event *event)
+{
+ return !event->attr.exclude_guest && perf_guest_state();
+}
+
+unsigned long perf_misc_flags(struct perf_event *event,
+ struct pt_regs *regs)
+{
+ if (should_sample_guest(event))
+ return perf_arch_guest_misc_flags(regs);
+
+ return perf_arch_misc_flags(regs);
+}
+
+unsigned long perf_instruction_pointer(struct perf_event *event,
+ struct pt_regs *regs)
+{
+ if (should_sample_guest(event))
+ return perf_guest_get_ip();
+
+ return perf_arch_instruction_pointer(regs);
+}
+
static void
perf_output_sample_regs(struct perf_output_handle *handle,
struct pt_regs *regs, u64 mask)
@@ -7839,7 +7847,7 @@ void perf_prepare_sample(struct perf_sample_data *data,
__perf_event_header__init_id(data, event, filtered_sample_type);
if (filtered_sample_type & PERF_SAMPLE_IP) {
- data->ip = perf_instruction_pointer(regs);
+ data->ip = perf_instruction_pointer(event, regs);
data->sample_flags |= PERF_SAMPLE_IP;
}
@@ -8003,7 +8011,7 @@ void perf_prepare_header(struct perf_event_header *header,
{
header->type = PERF_RECORD_SAMPLE;
header->size = perf_sample_data_size(data, event);
- header->misc = perf_misc_flags(regs);
+ header->misc = perf_misc_flags(event, regs);
/*
* If you're adding more sample types here, you likely need to do
@@ -8016,6 +8024,49 @@ void perf_prepare_header(struct perf_event_header *header,
WARN_ON_ONCE(header->size & 7);
}
+static void __perf_event_aux_pause(struct perf_event *event, bool pause)
+{
+ if (pause) {
+ if (!event->hw.aux_paused) {
+ event->hw.aux_paused = 1;
+ event->pmu->stop(event, PERF_EF_PAUSE);
+ }
+ } else {
+ if (event->hw.aux_paused) {
+ event->hw.aux_paused = 0;
+ event->pmu->start(event, PERF_EF_RESUME);
+ }
+ }
+}
+
+static void perf_event_aux_pause(struct perf_event *event, bool pause)
+{
+ struct perf_buffer *rb;
+
+ if (WARN_ON_ONCE(!event))
+ return;
+
+ rb = ring_buffer_get(event);
+ if (!rb)
+ return;
+
+ scoped_guard (irqsave) {
+ /*
+ * Guard against self-recursion here. Another event could trip
+ * this same from NMI context.
+ */
+ if (READ_ONCE(rb->aux_in_pause_resume))
+ break;
+
+ WRITE_ONCE(rb->aux_in_pause_resume, 1);
+ barrier();
+ __perf_event_aux_pause(event, pause);
+ barrier();
+ WRITE_ONCE(rb->aux_in_pause_resume, 0);
+ }
+ ring_buffer_put(rb);
+}
+
static __always_inline int
__perf_event_output(struct perf_event *event,
struct perf_sample_data *data,
@@ -9818,9 +9869,12 @@ static int __perf_event_overflow(struct perf_event *event,
ret = __perf_event_account_interrupt(event, throttle);
+ if (event->attr.aux_pause)
+ perf_event_aux_pause(event->aux_event, true);
+
if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
!bpf_overflow_handler(event, data, regs))
- return ret;
+ goto out;
/*
* XXX event_limit might not quite work as expected on inherited
@@ -9882,6 +9936,9 @@ static int __perf_event_overflow(struct perf_event *event,
event->pending_wakeup = 1;
irq_work_queue(&event->pending_irq);
}
+out:
+ if (event->attr.aux_resume)
+ perf_event_aux_pause(event->aux_event, false);
return ret;
}
@@ -12273,11 +12330,25 @@ perf_event_alloc(struct perf_event_attr *attr, int cpu,
}
if (event->attr.aux_output &&
- !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
+ (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) ||
+ event->attr.aux_pause || event->attr.aux_resume)) {
err = -EOPNOTSUPP;
goto err_pmu;
}
+ if (event->attr.aux_pause && event->attr.aux_resume) {
+ err = -EINVAL;
+ goto err_pmu;
+ }
+
+ if (event->attr.aux_start_paused) {
+ if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) {
+ err = -EOPNOTSUPP;
+ goto err_pmu;
+ }
+ event->hw.aux_paused = 1;
+ }
+
if (cgroup_fd != -1) {
err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
if (err)
@@ -12664,7 +12735,6 @@ SYSCALL_DEFINE5(perf_event_open,
struct perf_event_attr attr;
struct perf_event_context *ctx;
struct file *event_file = NULL;
- struct fd group = EMPTY_FD;
struct task_struct *task = NULL;
struct pmu *pmu;
int event_fd;
@@ -12735,10 +12805,12 @@ SYSCALL_DEFINE5(perf_event_open,
if (event_fd < 0)
return event_fd;
+ CLASS(fd, group)(group_fd); // group_fd == -1 => empty
if (group_fd != -1) {
- err = perf_fget_light(group_fd, &group);
- if (err)
+ if (!is_perf_file(group)) {
+ err = -EBADF;
goto err_fd;
+ }
group_leader = fd_file(group)->private_data;
if (flags & PERF_FLAG_FD_OUTPUT)
output_event = group_leader;
@@ -12750,7 +12822,7 @@ SYSCALL_DEFINE5(perf_event_open,
task = find_lively_task_by_vpid(pid);
if (IS_ERR(task)) {
err = PTR_ERR(task);
- goto err_group_fd;
+ goto err_fd;
}
}
@@ -13017,12 +13089,11 @@ SYSCALL_DEFINE5(perf_event_open,
mutex_unlock(&current->perf_event_mutex);
/*
- * Drop the reference on the group_event after placing the
- * new event on the sibling_list. This ensures destruction
- * of the group leader will find the pointer to itself in
- * perf_group_detach().
+ * File reference in group guarantees that group_leader has been
+ * kept alive until we place the new event on the sibling_list.
+ * This ensures destruction of the group leader will find
+ * the pointer to itself in perf_group_detach().
*/
- fdput(group);
fd_install(event_fd, event_file);
return event_fd;
@@ -13041,8 +13112,6 @@ err_alloc:
err_task:
if (task)
put_task_struct(task);
-err_group_fd:
- fdput(group);
err_fd:
put_unused_fd(event_fd);
return err;
@@ -13073,7 +13142,7 @@ perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
* Grouping is not supported for kernel events, neither is 'AUX',
* make sure the caller's intentions are adjusted.
*/
- if (attr->aux_output)
+ if (attr->aux_output || attr->aux_action)
return ERR_PTR(-EINVAL);
event = perf_event_alloc(attr, cpu, task, NULL, NULL,
diff --git a/kernel/events/internal.h b/kernel/events/internal.h
index e072d995d670..249288d82b8d 100644
--- a/kernel/events/internal.h
+++ b/kernel/events/internal.h
@@ -52,6 +52,7 @@ struct perf_buffer {
void (*free_aux)(void *);
refcount_t aux_refcount;
int aux_in_sampling;
+ int aux_in_pause_resume;
void **aux_pages;
void *aux_priv;
diff --git a/kernel/events/uprobes.c b/kernel/events/uprobes.c
index 4b52cb2ae6d6..a76ddc5fc982 100644
--- a/kernel/events/uprobes.c
+++ b/kernel/events/uprobes.c
@@ -26,6 +26,9 @@
#include <linux/task_work.h>
#include <linux/shmem_fs.h>
#include <linux/khugepaged.h>
+#include <linux/rcupdate_trace.h>
+#include <linux/workqueue.h>
+#include <linux/srcu.h>
#include <linux/uprobes.h>
@@ -42,8 +45,6 @@ static struct rb_root uprobes_tree = RB_ROOT;
static DEFINE_RWLOCK(uprobes_treelock); /* serialize rbtree access */
static seqcount_rwlock_t uprobes_seqcount = SEQCNT_RWLOCK_ZERO(uprobes_seqcount, &uprobes_treelock);
-DEFINE_STATIC_SRCU(uprobes_srcu);
-
#define UPROBES_HASH_SZ 13
/* serialize uprobe->pending_list */
static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
@@ -51,6 +52,9 @@ static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
+/* Covers return_instance's uprobe lifetime. */
+DEFINE_STATIC_SRCU(uretprobes_srcu);
+
/* Have a copy of original instruction */
#define UPROBE_COPY_INSN 0
@@ -62,10 +66,13 @@ struct uprobe {
struct list_head pending_list;
struct list_head consumers;
struct inode *inode; /* Also hold a ref to inode */
- struct rcu_head rcu;
+ union {
+ struct rcu_head rcu;
+ struct work_struct work;
+ };
loff_t offset;
loff_t ref_ctr_offset;
- unsigned long flags;
+ unsigned long flags; /* "unsigned long" so bitops work */
/*
* The generic code assumes that it has two members of unknown type
@@ -100,7 +107,6 @@ static LIST_HEAD(delayed_uprobe_list);
*/
struct xol_area {
wait_queue_head_t wq; /* if all slots are busy */
- atomic_t slot_count; /* number of in-use slots */
unsigned long *bitmap; /* 0 = free slot */
struct page *page;
@@ -620,17 +626,23 @@ static inline bool uprobe_is_active(struct uprobe *uprobe)
return !RB_EMPTY_NODE(&uprobe->rb_node);
}
-static void uprobe_free_rcu(struct rcu_head *rcu)
+static void uprobe_free_rcu_tasks_trace(struct rcu_head *rcu)
{
struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
kfree(uprobe);
}
-static void put_uprobe(struct uprobe *uprobe)
+static void uprobe_free_srcu(struct rcu_head *rcu)
{
- if (!refcount_dec_and_test(&uprobe->ref))
- return;
+ struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
+
+ call_rcu_tasks_trace(&uprobe->rcu, uprobe_free_rcu_tasks_trace);
+}
+
+static void uprobe_free_deferred(struct work_struct *work)
+{
+ struct uprobe *uprobe = container_of(work, struct uprobe, work);
write_lock(&uprobes_treelock);
@@ -651,7 +663,162 @@ static void put_uprobe(struct uprobe *uprobe)
delayed_uprobe_remove(uprobe, NULL);
mutex_unlock(&delayed_uprobe_lock);
- call_srcu(&uprobes_srcu, &uprobe->rcu, uprobe_free_rcu);
+ /* start srcu -> rcu_tasks_trace -> kfree chain */
+ call_srcu(&uretprobes_srcu, &uprobe->rcu, uprobe_free_srcu);
+}
+
+static void put_uprobe(struct uprobe *uprobe)
+{
+ if (!refcount_dec_and_test(&uprobe->ref))
+ return;
+
+ INIT_WORK(&uprobe->work, uprobe_free_deferred);
+ schedule_work(&uprobe->work);
+}
+
+/* Initialize hprobe as SRCU-protected "leased" uprobe */
+static void hprobe_init_leased(struct hprobe *hprobe, struct uprobe *uprobe, int srcu_idx)
+{
+ WARN_ON(!uprobe);
+ hprobe->state = HPROBE_LEASED;
+ hprobe->uprobe = uprobe;
+ hprobe->srcu_idx = srcu_idx;
+}
+
+/* Initialize hprobe as refcounted ("stable") uprobe (uprobe can be NULL). */
+static void hprobe_init_stable(struct hprobe *hprobe, struct uprobe *uprobe)
+{
+ hprobe->state = uprobe ? HPROBE_STABLE : HPROBE_GONE;
+ hprobe->uprobe = uprobe;
+ hprobe->srcu_idx = -1;
+}
+
+/*
+ * hprobe_consume() fetches hprobe's underlying uprobe and detects whether
+ * uprobe is SRCU protected or is refcounted. hprobe_consume() can be
+ * used only once for a given hprobe.
+ *
+ * Caller has to call hprobe_finalize() and pass previous hprobe_state, so
+ * that hprobe_finalize() can perform SRCU unlock or put uprobe, whichever
+ * is appropriate.
+ */
+static inline struct uprobe *hprobe_consume(struct hprobe *hprobe, enum hprobe_state *hstate)
+{
+ *hstate = xchg(&hprobe->state, HPROBE_CONSUMED);
+ switch (*hstate) {
+ case HPROBE_LEASED:
+ case HPROBE_STABLE:
+ return hprobe->uprobe;
+ case HPROBE_GONE: /* uprobe is NULL, no SRCU */
+ case HPROBE_CONSUMED: /* uprobe was finalized already, do nothing */
+ return NULL;
+ default:
+ WARN(1, "hprobe invalid state %d", *hstate);
+ return NULL;
+ }
+}
+
+/*
+ * Reset hprobe state and, if hprobe was LEASED, release SRCU lock.
+ * hprobe_finalize() can only be used from current context after
+ * hprobe_consume() call (which determines uprobe and hstate value).
+ */
+static void hprobe_finalize(struct hprobe *hprobe, enum hprobe_state hstate)
+{
+ switch (hstate) {
+ case HPROBE_LEASED:
+ __srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
+ break;
+ case HPROBE_STABLE:
+ put_uprobe(hprobe->uprobe);
+ break;
+ case HPROBE_GONE:
+ case HPROBE_CONSUMED:
+ break;
+ default:
+ WARN(1, "hprobe invalid state %d", hstate);
+ break;
+ }
+}
+
+/*
+ * Attempt to switch (atomically) uprobe from being SRCU protected (LEASED)
+ * to refcounted (STABLE) state. Competes with hprobe_consume(); only one of
+ * them can win the race to perform SRCU unlocking. Whoever wins must perform
+ * SRCU unlock.
+ *
+ * Returns underlying valid uprobe or NULL, if there was no underlying uprobe
+ * to begin with or we failed to bump its refcount and it's going away.
+ *
+ * Returned non-NULL uprobe can be still safely used within an ongoing SRCU
+ * locked region. If `get` is true, it's guaranteed that non-NULL uprobe has
+ * an extra refcount for caller to assume and use. Otherwise, it's not
+ * guaranteed that returned uprobe has a positive refcount, so caller has to
+ * attempt try_get_uprobe(), if it needs to preserve uprobe beyond current
+ * SRCU lock region. See dup_utask().
+ */
+static struct uprobe *hprobe_expire(struct hprobe *hprobe, bool get)
+{
+ enum hprobe_state hstate;
+
+ /*
+ * return_instance's hprobe is protected by RCU.
+ * Underlying uprobe is itself protected from reuse by SRCU.
+ */
+ lockdep_assert(rcu_read_lock_held() && srcu_read_lock_held(&uretprobes_srcu));
+
+ hstate = READ_ONCE(hprobe->state);
+ switch (hstate) {
+ case HPROBE_STABLE:
+ /* uprobe has positive refcount, bump refcount, if necessary */
+ return get ? get_uprobe(hprobe->uprobe) : hprobe->uprobe;
+ case HPROBE_GONE:
+ /*
+ * SRCU was unlocked earlier and we didn't manage to take
+ * uprobe refcnt, so it's effectively NULL
+ */
+ return NULL;
+ case HPROBE_CONSUMED:
+ /*
+ * uprobe was consumed, so it's effectively NULL as far as
+ * uretprobe processing logic is concerned
+ */
+ return NULL;
+ case HPROBE_LEASED: {
+ struct uprobe *uprobe = try_get_uprobe(hprobe->uprobe);
+ /*
+ * Try to switch hprobe state, guarding against
+ * hprobe_consume() or another hprobe_expire() racing with us.
+ * Note, if we failed to get uprobe refcount, we use special
+ * HPROBE_GONE state to signal that hprobe->uprobe shouldn't
+ * be used as it will be freed after SRCU is unlocked.
+ */
+ if (try_cmpxchg(&hprobe->state, &hstate, uprobe ? HPROBE_STABLE : HPROBE_GONE)) {
+ /* We won the race, we are the ones to unlock SRCU */
+ __srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
+ return get ? get_uprobe(uprobe) : uprobe;
+ }
+
+ /*
+ * We lost the race, undo refcount bump (if it ever happened),
+ * unless caller would like an extra refcount anyways.
+ */
+ if (uprobe && !get)
+ put_uprobe(uprobe);
+ /*
+ * Even if hprobe_consume() or another hprobe_expire() wins
+ * the state update race and unlocks SRCU from under us, we
+ * still have a guarantee that underyling uprobe won't be
+ * freed due to ongoing caller's SRCU lock region, so we can
+ * return it regardless. Also, if `get` was true, we also have
+ * an extra ref for the caller to own. This is used in dup_utask().
+ */
+ return uprobe;
+ }
+ default:
+ WARN(1, "unknown hprobe state %d", hstate);
+ return NULL;
+ }
}
static __always_inline
@@ -706,7 +873,7 @@ static struct uprobe *find_uprobe_rcu(struct inode *inode, loff_t offset)
struct rb_node *node;
unsigned int seq;
- lockdep_assert(srcu_read_lock_held(&uprobes_srcu));
+ lockdep_assert(rcu_read_lock_trace_held());
do {
seq = read_seqcount_begin(&uprobes_seqcount);
@@ -825,8 +992,11 @@ static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
{
+ static atomic64_t id;
+
down_write(&uprobe->consumer_rwsem);
list_add_rcu(&uc->cons_node, &uprobe->consumers);
+ uc->id = (__u64) atomic64_inc_return(&id);
up_write(&uprobe->consumer_rwsem);
}
@@ -934,8 +1104,7 @@ static bool filter_chain(struct uprobe *uprobe, struct mm_struct *mm)
bool ret = false;
down_read(&uprobe->consumer_rwsem);
- list_for_each_entry_srcu(uc, &uprobe->consumers, cons_node,
- srcu_read_lock_held(&uprobes_srcu)) {
+ list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
ret = consumer_filter(uc, mm);
if (ret)
break;
@@ -1156,7 +1325,8 @@ void uprobe_unregister_sync(void)
* unlucky enough caller can free consumer's memory and cause
* handler_chain() or handle_uretprobe_chain() to do an use-after-free.
*/
- synchronize_srcu(&uprobes_srcu);
+ synchronize_rcu_tasks_trace();
+ synchronize_srcu(&uretprobes_srcu);
}
EXPORT_SYMBOL_GPL(uprobe_unregister_sync);
@@ -1240,19 +1410,18 @@ EXPORT_SYMBOL_GPL(uprobe_register);
int uprobe_apply(struct uprobe *uprobe, struct uprobe_consumer *uc, bool add)
{
struct uprobe_consumer *con;
- int ret = -ENOENT, srcu_idx;
+ int ret = -ENOENT;
down_write(&uprobe->register_rwsem);
- srcu_idx = srcu_read_lock(&uprobes_srcu);
- list_for_each_entry_srcu(con, &uprobe->consumers, cons_node,
- srcu_read_lock_held(&uprobes_srcu)) {
+ rcu_read_lock_trace();
+ list_for_each_entry_rcu(con, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
if (con == uc) {
ret = register_for_each_vma(uprobe, add ? uc : NULL);
break;
}
}
- srcu_read_unlock(&uprobes_srcu, srcu_idx);
+ rcu_read_unlock_trace();
up_write(&uprobe->register_rwsem);
@@ -1475,9 +1644,15 @@ static vm_fault_t xol_fault(const struct vm_special_mapping *sm,
return 0;
}
+static int xol_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma)
+{
+ return -EPERM;
+}
+
static const struct vm_special_mapping xol_mapping = {
.name = "[uprobes]",
.fault = xol_fault,
+ .mremap = xol_mremap,
};
/* Slot allocation for XOL */
@@ -1553,7 +1728,6 @@ static struct xol_area *__create_xol_area(unsigned long vaddr)
init_waitqueue_head(&area->wq);
/* Reserve the 1st slot for get_trampoline_vaddr() */
set_bit(0, area->bitmap);
- atomic_set(&area->slot_count, 1);
insns = arch_uprobe_trampoline(&insns_size);
arch_uprobe_copy_ixol(area->page, 0, insns, insns_size);
@@ -1626,92 +1800,57 @@ void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
}
}
-/*
- * - search for a free slot.
- */
-static unsigned long xol_take_insn_slot(struct xol_area *area)
+static unsigned long xol_get_slot_nr(struct xol_area *area)
{
- unsigned long slot_addr;
- int slot_nr;
-
- do {
- slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
- if (slot_nr < UINSNS_PER_PAGE) {
- if (!test_and_set_bit(slot_nr, area->bitmap))
- break;
+ unsigned long slot_nr;
- slot_nr = UINSNS_PER_PAGE;
- continue;
- }
- wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
- } while (slot_nr >= UINSNS_PER_PAGE);
-
- slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
- atomic_inc(&area->slot_count);
+ slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
+ if (slot_nr < UINSNS_PER_PAGE) {
+ if (!test_and_set_bit(slot_nr, area->bitmap))
+ return slot_nr;
+ }
- return slot_addr;
+ return UINSNS_PER_PAGE;
}
/*
* xol_get_insn_slot - allocate a slot for xol.
- * Returns the allocated slot address or 0.
*/
-static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
+static bool xol_get_insn_slot(struct uprobe *uprobe, struct uprobe_task *utask)
{
- struct xol_area *area;
- unsigned long xol_vaddr;
+ struct xol_area *area = get_xol_area();
+ unsigned long slot_nr;
- area = get_xol_area();
if (!area)
- return 0;
+ return false;
- xol_vaddr = xol_take_insn_slot(area);
- if (unlikely(!xol_vaddr))
- return 0;
+ wait_event(area->wq, (slot_nr = xol_get_slot_nr(area)) < UINSNS_PER_PAGE);
- arch_uprobe_copy_ixol(area->page, xol_vaddr,
+ utask->xol_vaddr = area->vaddr + slot_nr * UPROBE_XOL_SLOT_BYTES;
+ arch_uprobe_copy_ixol(area->page, utask->xol_vaddr,
&uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
-
- return xol_vaddr;
+ return true;
}
/*
- * xol_free_insn_slot - If slot was earlier allocated by
- * @xol_get_insn_slot(), make the slot available for
- * subsequent requests.
+ * xol_free_insn_slot - free the slot allocated by xol_get_insn_slot()
*/
-static void xol_free_insn_slot(struct task_struct *tsk)
+static void xol_free_insn_slot(struct uprobe_task *utask)
{
- struct xol_area *area;
- unsigned long vma_end;
- unsigned long slot_addr;
-
- if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
- return;
+ struct xol_area *area = current->mm->uprobes_state.xol_area;
+ unsigned long offset = utask->xol_vaddr - area->vaddr;
+ unsigned int slot_nr;
- slot_addr = tsk->utask->xol_vaddr;
- if (unlikely(!slot_addr))
+ utask->xol_vaddr = 0;
+ /* xol_vaddr must fit into [area->vaddr, area->vaddr + PAGE_SIZE) */
+ if (WARN_ON_ONCE(offset >= PAGE_SIZE))
return;
- area = tsk->mm->uprobes_state.xol_area;
- vma_end = area->vaddr + PAGE_SIZE;
- if (area->vaddr <= slot_addr && slot_addr < vma_end) {
- unsigned long offset;
- int slot_nr;
-
- offset = slot_addr - area->vaddr;
- slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
- if (slot_nr >= UINSNS_PER_PAGE)
- return;
-
- clear_bit(slot_nr, area->bitmap);
- atomic_dec(&area->slot_count);
- smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
- if (waitqueue_active(&area->wq))
- wake_up(&area->wq);
-
- tsk->utask->xol_vaddr = 0;
- }
+ slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
+ clear_bit(slot_nr, area->bitmap);
+ smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
+ if (waitqueue_active(&area->wq))
+ wake_up(&area->wq);
}
void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
@@ -1750,11 +1889,18 @@ unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
return instruction_pointer(regs);
}
-static struct return_instance *free_ret_instance(struct return_instance *ri)
+static struct return_instance *free_ret_instance(struct return_instance *ri, bool cleanup_hprobe)
{
struct return_instance *next = ri->next;
- put_uprobe(ri->uprobe);
- kfree(ri);
+
+ if (cleanup_hprobe) {
+ enum hprobe_state hstate;
+
+ (void)hprobe_consume(&ri->hprobe, &hstate);
+ hprobe_finalize(&ri->hprobe, hstate);
+ }
+
+ kfree_rcu(ri, rcu);
return next;
}
@@ -1770,18 +1916,50 @@ void uprobe_free_utask(struct task_struct *t)
if (!utask)
return;
- if (utask->active_uprobe)
- put_uprobe(utask->active_uprobe);
+ WARN_ON_ONCE(utask->active_uprobe || utask->xol_vaddr);
+
+ timer_delete_sync(&utask->ri_timer);
ri = utask->return_instances;
while (ri)
- ri = free_ret_instance(ri);
+ ri = free_ret_instance(ri, true /* cleanup_hprobe */);
- xol_free_insn_slot(t);
kfree(utask);
t->utask = NULL;
}
+#define RI_TIMER_PERIOD (HZ / 10) /* 100 ms */
+
+#define for_each_ret_instance_rcu(pos, head) \
+ for (pos = rcu_dereference_raw(head); pos; pos = rcu_dereference_raw(pos->next))
+
+static void ri_timer(struct timer_list *timer)
+{
+ struct uprobe_task *utask = container_of(timer, struct uprobe_task, ri_timer);
+ struct return_instance *ri;
+
+ /* SRCU protects uprobe from reuse for the cmpxchg() inside hprobe_expire(). */
+ guard(srcu)(&uretprobes_srcu);
+ /* RCU protects return_instance from freeing. */
+ guard(rcu)();
+
+ for_each_ret_instance_rcu(ri, utask->return_instances)
+ hprobe_expire(&ri->hprobe, false);
+}
+
+static struct uprobe_task *alloc_utask(void)
+{
+ struct uprobe_task *utask;
+
+ utask = kzalloc(sizeof(*utask), GFP_KERNEL);
+ if (!utask)
+ return NULL;
+
+ timer_setup(&utask->ri_timer, ri_timer, 0);
+
+ return utask;
+}
+
/*
* Allocate a uprobe_task object for the task if necessary.
* Called when the thread hits a breakpoint.
@@ -1793,38 +1971,73 @@ void uprobe_free_utask(struct task_struct *t)
static struct uprobe_task *get_utask(void)
{
if (!current->utask)
- current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
+ current->utask = alloc_utask();
return current->utask;
}
+static size_t ri_size(int consumers_cnt)
+{
+ struct return_instance *ri;
+
+ return sizeof(*ri) + sizeof(ri->consumers[0]) * consumers_cnt;
+}
+
+#define DEF_CNT 4
+
+static struct return_instance *alloc_return_instance(void)
+{
+ struct return_instance *ri;
+
+ ri = kzalloc(ri_size(DEF_CNT), GFP_KERNEL);
+ if (!ri)
+ return ZERO_SIZE_PTR;
+
+ ri->consumers_cnt = DEF_CNT;
+ return ri;
+}
+
+static struct return_instance *dup_return_instance(struct return_instance *old)
+{
+ size_t size = ri_size(old->consumers_cnt);
+
+ return kmemdup(old, size, GFP_KERNEL);
+}
+
static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
{
struct uprobe_task *n_utask;
struct return_instance **p, *o, *n;
+ struct uprobe *uprobe;
- n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
+ n_utask = alloc_utask();
if (!n_utask)
return -ENOMEM;
t->utask = n_utask;
+ /* protect uprobes from freeing, we'll need try_get_uprobe() them */
+ guard(srcu)(&uretprobes_srcu);
+
p = &n_utask->return_instances;
for (o = o_utask->return_instances; o; o = o->next) {
- n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
+ n = dup_return_instance(o);
if (!n)
return -ENOMEM;
- *n = *o;
+ /* if uprobe is non-NULL, we'll have an extra refcount for uprobe */
+ uprobe = hprobe_expire(&o->hprobe, true);
+
/*
- * uprobe's refcnt has to be positive at this point, kept by
- * utask->return_instances items; return_instances can't be
- * removed right now, as task is blocked due to duping; so
- * get_uprobe() is safe to use here.
+ * New utask will have stable properly refcounted uprobe or
+ * NULL. Even if we failed to get refcounted uprobe, we still
+ * need to preserve full set of return_instances for proper
+ * uretprobe handling and nesting in forked task.
*/
- get_uprobe(n->uprobe);
- n->next = NULL;
+ hprobe_init_stable(&n->hprobe, uprobe);
- *p = n;
+ n->next = NULL;
+ rcu_assign_pointer(*p, n);
p = &n->next;
+
n_utask->depth++;
}
@@ -1900,45 +2113,34 @@ static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
- ri = free_ret_instance(ri);
+ ri = free_ret_instance(ri, true /* cleanup_hprobe */);
utask->depth--;
}
- utask->return_instances = ri;
+ rcu_assign_pointer(utask->return_instances, ri);
}
-static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
+static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs,
+ struct return_instance *ri)
{
- struct return_instance *ri;
- struct uprobe_task *utask;
+ struct uprobe_task *utask = current->utask;
unsigned long orig_ret_vaddr, trampoline_vaddr;
bool chained;
+ int srcu_idx;
if (!get_xol_area())
- return;
-
- utask = get_utask();
- if (!utask)
- return;
+ goto free;
if (utask->depth >= MAX_URETPROBE_DEPTH) {
printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
" nestedness limit pid/tgid=%d/%d\n",
current->pid, current->tgid);
- return;
+ goto free;
}
- /* we need to bump refcount to store uprobe in utask */
- if (!try_get_uprobe(uprobe))
- return;
-
- ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
- if (!ri)
- goto fail;
-
trampoline_vaddr = uprobe_get_trampoline_vaddr();
orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
if (orig_ret_vaddr == -1)
- goto fail;
+ goto free;
/* drop the entries invalidated by longjmp() */
chained = (orig_ret_vaddr == trampoline_vaddr);
@@ -1956,53 +2158,51 @@ static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
* attack from user-space.
*/
uprobe_warn(current, "handle tail call");
- goto fail;
+ goto free;
}
orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
}
- ri->uprobe = uprobe;
+
+ /* __srcu_read_lock() because SRCU lock survives switch to user space */
+ srcu_idx = __srcu_read_lock(&uretprobes_srcu);
+
ri->func = instruction_pointer(regs);
ri->stack = user_stack_pointer(regs);
ri->orig_ret_vaddr = orig_ret_vaddr;
ri->chained = chained;
utask->depth++;
+
+ hprobe_init_leased(&ri->hprobe, uprobe, srcu_idx);
ri->next = utask->return_instances;
- utask->return_instances = ri;
+ rcu_assign_pointer(utask->return_instances, ri);
+
+ mod_timer(&utask->ri_timer, jiffies + RI_TIMER_PERIOD);
return;
-fail:
+free:
kfree(ri);
- put_uprobe(uprobe);
}
/* Prepare to single-step probed instruction out of line. */
static int
pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
{
- struct uprobe_task *utask;
- unsigned long xol_vaddr;
+ struct uprobe_task *utask = current->utask;
int err;
- utask = get_utask();
- if (!utask)
- return -ENOMEM;
-
if (!try_get_uprobe(uprobe))
return -EINVAL;
- xol_vaddr = xol_get_insn_slot(uprobe);
- if (!xol_vaddr) {
+ if (!xol_get_insn_slot(uprobe, utask)) {
err = -ENOMEM;
goto err_out;
}
- utask->xol_vaddr = xol_vaddr;
utask->vaddr = bp_vaddr;
-
err = arch_uprobe_pre_xol(&uprobe->arch, regs);
if (unlikely(err)) {
- xol_free_insn_slot(current);
+ xol_free_insn_slot(utask);
goto err_out;
}
@@ -2125,35 +2325,90 @@ static struct uprobe *find_active_uprobe_rcu(unsigned long bp_vaddr, int *is_swb
return uprobe;
}
+static struct return_instance*
+push_consumer(struct return_instance *ri, int idx, __u64 id, __u64 cookie)
+{
+ if (unlikely(ri == ZERO_SIZE_PTR))
+ return ri;
+
+ if (unlikely(idx >= ri->consumers_cnt)) {
+ struct return_instance *old_ri = ri;
+
+ ri->consumers_cnt += DEF_CNT;
+ ri = krealloc(old_ri, ri_size(old_ri->consumers_cnt), GFP_KERNEL);
+ if (!ri) {
+ kfree(old_ri);
+ return ZERO_SIZE_PTR;
+ }
+ }
+
+ ri->consumers[idx].id = id;
+ ri->consumers[idx].cookie = cookie;
+ return ri;
+}
+
+static struct return_consumer *
+return_consumer_find(struct return_instance *ri, int *iter, int id)
+{
+ struct return_consumer *ric;
+ int idx = *iter;
+
+ for (ric = &ri->consumers[idx]; idx < ri->consumers_cnt; idx++, ric++) {
+ if (ric->id == id) {
+ *iter = idx + 1;
+ return ric;
+ }
+ }
+ return NULL;
+}
+
+static bool ignore_ret_handler(int rc)
+{
+ return rc == UPROBE_HANDLER_REMOVE || rc == UPROBE_HANDLER_IGNORE;
+}
+
static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
{
struct uprobe_consumer *uc;
- int remove = UPROBE_HANDLER_REMOVE;
- bool need_prep = false; /* prepare return uprobe, when needed */
- bool has_consumers = false;
+ bool has_consumers = false, remove = true;
+ struct return_instance *ri = NULL;
+ int push_idx = 0;
current->utask->auprobe = &uprobe->arch;
- list_for_each_entry_srcu(uc, &uprobe->consumers, cons_node,
- srcu_read_lock_held(&uprobes_srcu)) {
+ list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
+ bool session = uc->handler && uc->ret_handler;
+ __u64 cookie = 0;
int rc = 0;
if (uc->handler) {
- rc = uc->handler(uc, regs);
- WARN(rc & ~UPROBE_HANDLER_MASK,
+ rc = uc->handler(uc, regs, &cookie);
+ WARN(rc < 0 || rc > 2,
"bad rc=0x%x from %ps()\n", rc, uc->handler);
}
- if (uc->ret_handler)
- need_prep = true;
-
- remove &= rc;
+ remove &= rc == UPROBE_HANDLER_REMOVE;
has_consumers = true;
+
+ if (!uc->ret_handler || ignore_ret_handler(rc))
+ continue;
+
+ if (!ri)
+ ri = alloc_return_instance();
+
+ if (session)
+ ri = push_consumer(ri, push_idx++, uc->id, cookie);
}
current->utask->auprobe = NULL;
- if (need_prep && !remove)
- prepare_uretprobe(uprobe, regs); /* put bp at return */
+ if (!ZERO_OR_NULL_PTR(ri)) {
+ /*
+ * The push_idx value has the final number of return consumers,
+ * and ri->consumers_cnt has number of allocated consumers.
+ */
+ ri->consumers_cnt = push_idx;
+ prepare_uretprobe(uprobe, regs, ri);
+ }
if (remove && has_consumers) {
down_read(&uprobe->register_rwsem);
@@ -2169,19 +2424,27 @@ static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
}
static void
-handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
+handle_uretprobe_chain(struct return_instance *ri, struct uprobe *uprobe, struct pt_regs *regs)
{
- struct uprobe *uprobe = ri->uprobe;
+ struct return_consumer *ric;
struct uprobe_consumer *uc;
- int srcu_idx;
+ int ric_idx = 0;
+
+ /* all consumers unsubscribed meanwhile */
+ if (unlikely(!uprobe))
+ return;
- srcu_idx = srcu_read_lock(&uprobes_srcu);
- list_for_each_entry_srcu(uc, &uprobe->consumers, cons_node,
- srcu_read_lock_held(&uprobes_srcu)) {
- if (uc->ret_handler)
- uc->ret_handler(uc, ri->func, regs);
+ rcu_read_lock_trace();
+ list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
+ bool session = uc->handler && uc->ret_handler;
+
+ if (uc->ret_handler) {
+ ric = return_consumer_find(ri, &ric_idx, uc->id);
+ if (!session || ric)
+ uc->ret_handler(uc, ri->func, regs, ric ? &ric->cookie : NULL);
+ }
}
- srcu_read_unlock(&uprobes_srcu, srcu_idx);
+ rcu_read_unlock_trace();
}
static struct return_instance *find_next_ret_chain(struct return_instance *ri)
@@ -2200,6 +2463,8 @@ void uprobe_handle_trampoline(struct pt_regs *regs)
{
struct uprobe_task *utask;
struct return_instance *ri, *next;
+ struct uprobe *uprobe;
+ enum hprobe_state hstate;
bool valid;
utask = current->utask;
@@ -2230,21 +2495,24 @@ void uprobe_handle_trampoline(struct pt_regs *regs)
* trampoline addresses on the stack are replaced with correct
* original return addresses
*/
- utask->return_instances = ri->next;
+ rcu_assign_pointer(utask->return_instances, ri->next);
+
+ uprobe = hprobe_consume(&ri->hprobe, &hstate);
if (valid)
- handle_uretprobe_chain(ri, regs);
- ri = free_ret_instance(ri);
+ handle_uretprobe_chain(ri, uprobe, regs);
+ hprobe_finalize(&ri->hprobe, hstate);
+
+ /* We already took care of hprobe, no need to waste more time on that. */
+ ri = free_ret_instance(ri, false /* !cleanup_hprobe */);
utask->depth--;
} while (ri != next);
} while (!valid);
- utask->return_instances = ri;
return;
- sigill:
+sigill:
uprobe_warn(current, "handle uretprobe, sending SIGILL.");
force_sig(SIGILL);
-
}
bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
@@ -2266,13 +2534,13 @@ static void handle_swbp(struct pt_regs *regs)
{
struct uprobe *uprobe;
unsigned long bp_vaddr;
- int is_swbp, srcu_idx;
+ int is_swbp;
bp_vaddr = uprobe_get_swbp_addr(regs);
if (bp_vaddr == uprobe_get_trampoline_vaddr())
return uprobe_handle_trampoline(regs);
- srcu_idx = srcu_read_lock(&uprobes_srcu);
+ rcu_read_lock_trace();
uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp);
if (!uprobe) {
@@ -2330,7 +2598,7 @@ static void handle_swbp(struct pt_regs *regs)
out:
/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
- srcu_read_unlock(&uprobes_srcu, srcu_idx);
+ rcu_read_unlock_trace();
}
/*
@@ -2353,7 +2621,7 @@ static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
put_uprobe(uprobe);
utask->active_uprobe = NULL;
utask->state = UTASK_RUNNING;
- xol_free_insn_slot(current);
+ xol_free_insn_slot(utask);
spin_lock_irq(&current->sighand->siglock);
recalc_sigpending(); /* see uprobe_deny_signal() */
diff --git a/kernel/exit.c b/kernel/exit.c
index 619f0014c33b..1dcddfe537ee 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -25,7 +25,6 @@
#include <linux/acct.h>
#include <linux/tsacct_kern.h>
#include <linux/file.h>
-#include <linux/fdtable.h>
#include <linux/freezer.h>
#include <linux/binfmts.h>
#include <linux/nsproxy.h>
diff --git a/kernel/fork.c b/kernel/fork.c
index 22f43721d031..e58d27c05788 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -1185,7 +1185,7 @@ static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
tsk->active_memcg = NULL;
#endif
-#ifdef CONFIG_CPU_SUP_INTEL
+#ifdef CONFIG_X86_BUS_LOCK_DETECT
tsk->reported_split_lock = 0;
#endif
@@ -1299,7 +1299,7 @@ static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
if (init_new_context(p, mm))
goto fail_nocontext;
- if (mm_alloc_cid(mm))
+ if (mm_alloc_cid(mm, p))
goto fail_cid;
if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
@@ -1862,6 +1862,7 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
#ifdef CONFIG_POSIX_TIMERS
INIT_HLIST_HEAD(&sig->posix_timers);
+ INIT_HLIST_HEAD(&sig->ignored_posix_timers);
hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
sig->real_timer.function = it_real_fn;
#endif
diff --git a/kernel/futex/core.c b/kernel/futex/core.c
index 136768ae2637..326bfe6549d7 100644
--- a/kernel/futex/core.c
+++ b/kernel/futex/core.c
@@ -140,9 +140,9 @@ futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
if (!time)
return NULL;
- hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
- CLOCK_REALTIME : CLOCK_MONOTONIC,
- HRTIMER_MODE_ABS);
+ hrtimer_setup_sleeper_on_stack(timeout,
+ (flags & FLAGS_CLOCKRT) ? CLOCK_REALTIME : CLOCK_MONOTONIC,
+ HRTIMER_MODE_ABS);
/*
* If range_ns is 0, calling hrtimer_set_expires_range_ns() is
* effectively the same as calling hrtimer_set_expires().
@@ -181,12 +181,12 @@ static u64 get_inode_sequence_number(struct inode *inode)
return old;
for (;;) {
- u64 new = atomic64_add_return(1, &i_seq);
+ u64 new = atomic64_inc_return(&i_seq);
if (WARN_ON_ONCE(!new))
continue;
- old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
- if (old)
+ old = 0;
+ if (!atomic64_try_cmpxchg_relaxed(&inode->i_sequence, &old, new))
return old;
return new;
}
diff --git a/kernel/futex/pi.c b/kernel/futex/pi.c
index 5722467f2737..d62cca5ed8f4 100644
--- a/kernel/futex/pi.c
+++ b/kernel/futex/pi.c
@@ -922,6 +922,7 @@ int futex_lock_pi(u32 __user *uaddr, unsigned int flags, ktime_t *time, int tryl
struct rt_mutex_waiter rt_waiter;
struct futex_hash_bucket *hb;
struct futex_q q = futex_q_init;
+ DEFINE_WAKE_Q(wake_q);
int res, ret;
if (!IS_ENABLED(CONFIG_FUTEX_PI))
@@ -1018,8 +1019,11 @@ retry_private:
* such that futex_unlock_pi() is guaranteed to observe the waiter when
* it sees the futex_q::pi_state.
*/
- ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
+ ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current, &wake_q);
+ preempt_disable();
raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
+ wake_up_q(&wake_q);
+ preempt_enable();
if (ret) {
if (ret == 1)
diff --git a/kernel/irq/devres.c b/kernel/irq/devres.c
index b3e98668f4dd..eb16a58e0322 100644
--- a/kernel/irq/devres.c
+++ b/kernel/irq/devres.c
@@ -141,9 +141,8 @@ void devm_free_irq(struct device *dev, unsigned int irq, void *dev_id)
{
struct irq_devres match_data = { irq, dev_id };
- WARN_ON(devres_destroy(dev, devm_irq_release, devm_irq_match,
+ WARN_ON(devres_release(dev, devm_irq_release, devm_irq_match,
&match_data));
- free_irq(irq, dev_id);
}
EXPORT_SYMBOL(devm_free_irq);
diff --git a/kernel/irq/irqdesc.c b/kernel/irq/irqdesc.c
index 1dee88ba0ae4..0253e77fcd9a 100644
--- a/kernel/irq/irqdesc.c
+++ b/kernel/irq/irqdesc.c
@@ -15,6 +15,7 @@
#include <linux/maple_tree.h>
#include <linux/irqdomain.h>
#include <linux/sysfs.h>
+#include <linux/string_choices.h>
#include "internals.h"
@@ -138,8 +139,30 @@ static void desc_set_defaults(unsigned int irq, struct irq_desc *desc, int node,
desc_smp_init(desc, node, affinity);
}
-int nr_irqs = NR_IRQS;
-EXPORT_SYMBOL_GPL(nr_irqs);
+static unsigned int nr_irqs = NR_IRQS;
+
+/**
+ * irq_get_nr_irqs() - Number of interrupts supported by the system.
+ */
+unsigned int irq_get_nr_irqs(void)
+{
+ return nr_irqs;
+}
+EXPORT_SYMBOL_GPL(irq_get_nr_irqs);
+
+/**
+ * irq_set_nr_irqs() - Set the number of interrupts supported by the system.
+ * @nr: New number of interrupts.
+ *
+ * Return: @nr.
+ */
+unsigned int irq_set_nr_irqs(unsigned int nr)
+{
+ nr_irqs = nr;
+
+ return nr;
+}
+EXPORT_SYMBOL_GPL(irq_set_nr_irqs);
static DEFINE_MUTEX(sparse_irq_lock);
static struct maple_tree sparse_irqs = MTREE_INIT_EXT(sparse_irqs,
@@ -298,8 +321,7 @@ static ssize_t wakeup_show(struct kobject *kobj,
ssize_t ret = 0;
raw_spin_lock_irq(&desc->lock);
- ret = sprintf(buf, "%s\n",
- irqd_is_wakeup_set(&desc->irq_data) ? "enabled" : "disabled");
+ ret = sprintf(buf, "%s\n", str_enabled_disabled(irqd_is_wakeup_set(&desc->irq_data)));
raw_spin_unlock_irq(&desc->lock);
return ret;
diff --git a/kernel/irq/irqdomain.c b/kernel/irq/irqdomain.c
index e0bff21f30e0..ec6d8e72d980 100644
--- a/kernel/irq/irqdomain.c
+++ b/kernel/irq/irqdomain.c
@@ -1225,7 +1225,7 @@ int irq_domain_alloc_descs(int virq, unsigned int cnt, irq_hw_number_t hwirq,
virq = __irq_alloc_descs(virq, virq, cnt, node, THIS_MODULE,
affinity);
} else {
- hint = hwirq % nr_irqs;
+ hint = hwirq % irq_get_nr_irqs();
if (hint == 0)
hint++;
virq = __irq_alloc_descs(-1, hint, cnt, node, THIS_MODULE,
diff --git a/kernel/irq/proc.c b/kernel/irq/proc.c
index 9081ada81c3d..f36c33bd2da4 100644
--- a/kernel/irq/proc.c
+++ b/kernel/irq/proc.c
@@ -457,11 +457,12 @@ int __weak arch_show_interrupts(struct seq_file *p, int prec)
}
#ifndef ACTUAL_NR_IRQS
-# define ACTUAL_NR_IRQS nr_irqs
+# define ACTUAL_NR_IRQS irq_get_nr_irqs()
#endif
int show_interrupts(struct seq_file *p, void *v)
{
+ const unsigned int nr_irqs = irq_get_nr_irqs();
static int prec;
int i = *(loff_t *) v, j;
@@ -494,9 +495,12 @@ int show_interrupts(struct seq_file *p, void *v)
if (!desc->action || irq_desc_is_chained(desc) || !desc->kstat_irqs)
goto outsparse;
- seq_printf(p, "%*d: ", prec, i);
- for_each_online_cpu(j)
- seq_printf(p, "%10u ", desc->kstat_irqs ? per_cpu(desc->kstat_irqs->cnt, j) : 0);
+ seq_printf(p, "%*d:", prec, i);
+ for_each_online_cpu(j) {
+ unsigned int cnt = desc->kstat_irqs ? per_cpu(desc->kstat_irqs->cnt, j) : 0;
+
+ seq_put_decimal_ull_width(p, " ", cnt, 10);
+ }
raw_spin_lock_irqsave(&desc->lock, flags);
if (desc->irq_data.chip) {
diff --git a/kernel/kcmp.c b/kernel/kcmp.c
index b0639f21041f..2c596851f8a9 100644
--- a/kernel/kcmp.c
+++ b/kernel/kcmp.c
@@ -63,9 +63,7 @@ get_file_raw_ptr(struct task_struct *task, unsigned int idx)
{
struct file *file;
- rcu_read_lock();
- file = task_lookup_fdget_rcu(task, idx);
- rcu_read_unlock();
+ file = fget_task(task, idx);
if (file)
fput(file);
diff --git a/kernel/kcsan/debugfs.c b/kernel/kcsan/debugfs.c
index 53b21ae30e00..2af39ba5b70b 100644
--- a/kernel/kcsan/debugfs.c
+++ b/kernel/kcsan/debugfs.c
@@ -46,14 +46,8 @@ static struct {
int used; /* number of elements used */
bool sorted; /* if elements are sorted */
bool whitelist; /* if list is a blacklist or whitelist */
-} report_filterlist = {
- .addrs = NULL,
- .size = 8, /* small initial size */
- .used = 0,
- .sorted = false,
- .whitelist = false, /* default is blacklist */
-};
-static DEFINE_SPINLOCK(report_filterlist_lock);
+} report_filterlist;
+static DEFINE_RAW_SPINLOCK(report_filterlist_lock);
/*
* The microbenchmark allows benchmarking KCSAN core runtime only. To run
@@ -110,7 +104,7 @@ bool kcsan_skip_report_debugfs(unsigned long func_addr)
return false;
func_addr -= offset; /* Get function start */
- spin_lock_irqsave(&report_filterlist_lock, flags);
+ raw_spin_lock_irqsave(&report_filterlist_lock, flags);
if (report_filterlist.used == 0)
goto out;
@@ -127,7 +121,7 @@ bool kcsan_skip_report_debugfs(unsigned long func_addr)
ret = !ret;
out:
- spin_unlock_irqrestore(&report_filterlist_lock, flags);
+ raw_spin_unlock_irqrestore(&report_filterlist_lock, flags);
return ret;
}
@@ -135,9 +129,9 @@ static void set_report_filterlist_whitelist(bool whitelist)
{
unsigned long flags;
- spin_lock_irqsave(&report_filterlist_lock, flags);
+ raw_spin_lock_irqsave(&report_filterlist_lock, flags);
report_filterlist.whitelist = whitelist;
- spin_unlock_irqrestore(&report_filterlist_lock, flags);
+ raw_spin_unlock_irqrestore(&report_filterlist_lock, flags);
}
/* Returns 0 on success, error-code otherwise. */
@@ -145,6 +139,9 @@ static ssize_t insert_report_filterlist(const char *func)
{
unsigned long flags;
unsigned long addr = kallsyms_lookup_name(func);
+ unsigned long *delay_free = NULL;
+ unsigned long *new_addrs = NULL;
+ size_t new_size = 0;
ssize_t ret = 0;
if (!addr) {
@@ -152,42 +149,42 @@ static ssize_t insert_report_filterlist(const char *func)
return -ENOENT;
}
- spin_lock_irqsave(&report_filterlist_lock, flags);
+retry_alloc:
+ /*
+ * Check if we need an allocation, and re-validate under the lock. Since
+ * the report_filterlist_lock is a raw, cannot allocate under the lock.
+ */
+ if (data_race(report_filterlist.used == report_filterlist.size)) {
+ new_size = (report_filterlist.size ?: 4) * 2;
+ delay_free = new_addrs = kmalloc_array(new_size, sizeof(unsigned long), GFP_KERNEL);
+ if (!new_addrs)
+ return -ENOMEM;
+ }
- if (report_filterlist.addrs == NULL) {
- /* initial allocation */
- report_filterlist.addrs =
- kmalloc_array(report_filterlist.size,
- sizeof(unsigned long), GFP_ATOMIC);
- if (report_filterlist.addrs == NULL) {
- ret = -ENOMEM;
- goto out;
- }
- } else if (report_filterlist.used == report_filterlist.size) {
- /* resize filterlist */
- size_t new_size = report_filterlist.size * 2;
- unsigned long *new_addrs =
- krealloc(report_filterlist.addrs,
- new_size * sizeof(unsigned long), GFP_ATOMIC);
-
- if (new_addrs == NULL) {
- /* leave filterlist itself untouched */
- ret = -ENOMEM;
- goto out;
+ raw_spin_lock_irqsave(&report_filterlist_lock, flags);
+ if (report_filterlist.used == report_filterlist.size) {
+ /* Check we pre-allocated enough, and retry if not. */
+ if (report_filterlist.used >= new_size) {
+ raw_spin_unlock_irqrestore(&report_filterlist_lock, flags);
+ kfree(new_addrs); /* kfree(NULL) is safe */
+ delay_free = new_addrs = NULL;
+ goto retry_alloc;
}
+ if (report_filterlist.used)
+ memcpy(new_addrs, report_filterlist.addrs, report_filterlist.used * sizeof(unsigned long));
+ delay_free = report_filterlist.addrs; /* free the old list */
+ report_filterlist.addrs = new_addrs; /* switch to the new list */
report_filterlist.size = new_size;
- report_filterlist.addrs = new_addrs;
}
/* Note: deduplicating should be done in userspace. */
- report_filterlist.addrs[report_filterlist.used++] =
- kallsyms_lookup_name(func);
+ report_filterlist.addrs[report_filterlist.used++] = addr;
report_filterlist.sorted = false;
-out:
- spin_unlock_irqrestore(&report_filterlist_lock, flags);
+ raw_spin_unlock_irqrestore(&report_filterlist_lock, flags);
+ kfree(delay_free);
return ret;
}
@@ -204,13 +201,13 @@ static int show_info(struct seq_file *file, void *v)
}
/* show filter functions, and filter type */
- spin_lock_irqsave(&report_filterlist_lock, flags);
+ raw_spin_lock_irqsave(&report_filterlist_lock, flags);
seq_printf(file, "\n%s functions: %s\n",
report_filterlist.whitelist ? "whitelisted" : "blacklisted",
report_filterlist.used == 0 ? "none" : "");
for (i = 0; i < report_filterlist.used; ++i)
seq_printf(file, " %ps\n", (void *)report_filterlist.addrs[i]);
- spin_unlock_irqrestore(&report_filterlist_lock, flags);
+ raw_spin_unlock_irqrestore(&report_filterlist_lock, flags);
return 0;
}
diff --git a/kernel/kprobes.c b/kernel/kprobes.c
index da59c68df841..b027a4030976 100644
--- a/kernel/kprobes.c
+++ b/kernel/kprobes.c
@@ -95,10 +95,6 @@ struct kprobe_insn_page {
char slot_used[];
};
-#define KPROBE_INSN_PAGE_SIZE(slots) \
- (offsetof(struct kprobe_insn_page, slot_used) + \
- (sizeof(char) * (slots)))
-
static int slots_per_page(struct kprobe_insn_cache *c)
{
return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
@@ -175,7 +171,7 @@ kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
goto retry;
/* All out of space. Need to allocate a new page. */
- kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
+ kip = kmalloc(struct_size(kip, slot_used, slots_per_page(c)), GFP_KERNEL);
if (!kip)
goto out;
@@ -206,29 +202,29 @@ static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
{
kip->slot_used[idx] = SLOT_CLEAN;
kip->nused--;
- if (kip->nused == 0) {
+ if (kip->nused != 0)
+ return false;
+
+ /*
+ * Page is no longer in use. Free it unless
+ * it's the last one. We keep the last one
+ * so as not to have to set it up again the
+ * next time somebody inserts a probe.
+ */
+ if (!list_is_singular(&kip->list)) {
/*
- * Page is no longer in use. Free it unless
- * it's the last one. We keep the last one
- * so as not to have to set it up again the
- * next time somebody inserts a probe.
+ * Record perf ksymbol unregister event before removing
+ * the page.
*/
- if (!list_is_singular(&kip->list)) {
- /*
- * Record perf ksymbol unregister event before removing
- * the page.
- */
- perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
- (unsigned long)kip->insns, PAGE_SIZE, true,
- kip->cache->sym);
- list_del_rcu(&kip->list);
- synchronize_rcu();
- kip->cache->free(kip->insns);
- kfree(kip);
- }
- return true;
+ perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
+ (unsigned long)kip->insns, PAGE_SIZE, true,
+ kip->cache->sym);
+ list_del_rcu(&kip->list);
+ synchronize_rcu();
+ kip->cache->free(kip->insns);
+ kfree(kip);
}
- return false;
+ return true;
}
static int collect_garbage_slots(struct kprobe_insn_cache *c)
@@ -353,8 +349,8 @@ struct kprobe_insn_cache kprobe_optinsn_slots = {
/* .insn_size is initialized later */
.nr_garbage = 0,
};
-#endif
-#endif
+#endif /* CONFIG_OPTPROBES */
+#endif /* __ARCH_WANT_KPROBES_INSN_SLOT */
/* We have preemption disabled.. so it is safe to use __ versions */
static inline void set_kprobe_instance(struct kprobe *kp)
@@ -1543,7 +1539,7 @@ static int check_ftrace_location(struct kprobe *p)
if (ftrace_location(addr) == addr) {
#ifdef CONFIG_KPROBES_ON_FTRACE
p->flags |= KPROBE_FLAG_FTRACE;
-#else /* !CONFIG_KPROBES_ON_FTRACE */
+#else
return -EINVAL;
#endif
}
@@ -1725,28 +1721,29 @@ static struct kprobe *__disable_kprobe(struct kprobe *p)
if (unlikely(orig_p == NULL))
return ERR_PTR(-EINVAL);
- if (!kprobe_disabled(p)) {
- /* Disable probe if it is a child probe */
- if (p != orig_p)
- p->flags |= KPROBE_FLAG_DISABLED;
+ if (kprobe_disabled(p))
+ return orig_p;
- /* Try to disarm and disable this/parent probe */
- if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
- /*
- * Don't be lazy here. Even if 'kprobes_all_disarmed'
- * is false, 'orig_p' might not have been armed yet.
- * Note arm_all_kprobes() __tries__ to arm all kprobes
- * on the best effort basis.
- */
- if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
- ret = disarm_kprobe(orig_p, true);
- if (ret) {
- p->flags &= ~KPROBE_FLAG_DISABLED;
- return ERR_PTR(ret);
- }
+ /* Disable probe if it is a child probe */
+ if (p != orig_p)
+ p->flags |= KPROBE_FLAG_DISABLED;
+
+ /* Try to disarm and disable this/parent probe */
+ if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
+ /*
+ * Don't be lazy here. Even if 'kprobes_all_disarmed'
+ * is false, 'orig_p' might not have been armed yet.
+ * Note arm_all_kprobes() __tries__ to arm all kprobes
+ * on the best effort basis.
+ */
+ if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
+ ret = disarm_kprobe(orig_p, true);
+ if (ret) {
+ p->flags &= ~KPROBE_FLAG_DISABLED;
+ return ERR_PTR(ret);
}
- orig_p->flags |= KPROBE_FLAG_DISABLED;
}
+ orig_p->flags |= KPROBE_FLAG_DISABLED;
}
return orig_p;
diff --git a/kernel/locking/lockdep.c b/kernel/locking/lockdep.c
index 536bd471557f..2d8ec0351ef9 100644
--- a/kernel/locking/lockdep.c
+++ b/kernel/locking/lockdep.c
@@ -4586,6 +4586,30 @@ void lockdep_softirqs_off(unsigned long ip)
debug_atomic_inc(redundant_softirqs_off);
}
+/**
+ * lockdep_cleanup_dead_cpu - Ensure CPU lockdep state is cleanly stopped
+ *
+ * @cpu: index of offlined CPU
+ * @idle: task pointer for offlined CPU's idle thread
+ *
+ * Invoked after the CPU is dead. Ensures that the tracing infrastructure
+ * is left in a suitable state for the CPU to be subsequently brought
+ * online again.
+ */
+void lockdep_cleanup_dead_cpu(unsigned int cpu, struct task_struct *idle)
+{
+ if (unlikely(!debug_locks))
+ return;
+
+ if (unlikely(per_cpu(hardirqs_enabled, cpu))) {
+ pr_warn("CPU %u left hardirqs enabled!", cpu);
+ if (idle)
+ print_irqtrace_events(idle);
+ /* Clean it up for when the CPU comes online again. */
+ per_cpu(hardirqs_enabled, cpu) = 0;
+ }
+}
+
static int
mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
{
@@ -6576,17 +6600,17 @@ EXPORT_SYMBOL_GPL(lockdep_unregister_key);
void __init lockdep_init(void)
{
- printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
+ pr_info("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
- printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES);
- printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH);
- printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS);
- printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE);
- printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES);
- printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS);
- printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE);
+ pr_info("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES);
+ pr_info("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH);
+ pr_info("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS);
+ pr_info("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE);
+ pr_info("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES);
+ pr_info("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS);
+ pr_info("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE);
- printk(" memory used by lock dependency info: %zu kB\n",
+ pr_info(" memory used by lock dependency info: %zu kB\n",
(sizeof(lock_classes) +
sizeof(lock_classes_in_use) +
sizeof(classhash_table) +
@@ -6604,12 +6628,12 @@ void __init lockdep_init(void)
);
#if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
- printk(" memory used for stack traces: %zu kB\n",
+ pr_info(" memory used for stack traces: %zu kB\n",
(sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
);
#endif
- printk(" per task-struct memory footprint: %zu bytes\n",
+ pr_info(" per task-struct memory footprint: %zu bytes\n",
sizeof(((struct task_struct *)NULL)->held_locks));
}
diff --git a/kernel/locking/mutex.c b/kernel/locking/mutex.c
index cbae8c0b89ab..3302e52f0c96 100644
--- a/kernel/locking/mutex.c
+++ b/kernel/locking/mutex.c
@@ -56,31 +56,6 @@ __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
}
EXPORT_SYMBOL(__mutex_init);
-/*
- * @owner: contains: 'struct task_struct *' to the current lock owner,
- * NULL means not owned. Since task_struct pointers are aligned at
- * at least L1_CACHE_BYTES, we have low bits to store extra state.
- *
- * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
- * Bit1 indicates unlock needs to hand the lock to the top-waiter
- * Bit2 indicates handoff has been done and we're waiting for pickup.
- */
-#define MUTEX_FLAG_WAITERS 0x01
-#define MUTEX_FLAG_HANDOFF 0x02
-#define MUTEX_FLAG_PICKUP 0x04
-
-#define MUTEX_FLAGS 0x07
-
-/*
- * Internal helper function; C doesn't allow us to hide it :/
- *
- * DO NOT USE (outside of mutex code).
- */
-static inline struct task_struct *__mutex_owner(struct mutex *lock)
-{
- return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS);
-}
-
static inline struct task_struct *__owner_task(unsigned long owner)
{
return (struct task_struct *)(owner & ~MUTEX_FLAGS);
@@ -575,8 +550,10 @@ __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclas
struct lockdep_map *nest_lock, unsigned long ip,
struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
{
+ DEFINE_WAKE_Q(wake_q);
struct mutex_waiter waiter;
struct ww_mutex *ww;
+ unsigned long flags;
int ret;
if (!use_ww_ctx)
@@ -619,13 +596,13 @@ __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclas
return 0;
}
- raw_spin_lock(&lock->wait_lock);
+ raw_spin_lock_irqsave(&lock->wait_lock, flags);
/*
* After waiting to acquire the wait_lock, try again.
*/
if (__mutex_trylock(lock)) {
if (ww_ctx)
- __ww_mutex_check_waiters(lock, ww_ctx);
+ __ww_mutex_check_waiters(lock, ww_ctx, &wake_q);
goto skip_wait;
}
@@ -645,7 +622,7 @@ __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclas
* Add in stamp order, waking up waiters that must kill
* themselves.
*/
- ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
+ ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx, &wake_q);
if (ret)
goto err_early_kill;
}
@@ -680,7 +657,11 @@ __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclas
goto err;
}
- raw_spin_unlock(&lock->wait_lock);
+ raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
+ /* Make sure we do wakeups before calling schedule */
+ wake_up_q(&wake_q);
+ wake_q_init(&wake_q);
+
schedule_preempt_disabled();
first = __mutex_waiter_is_first(lock, &waiter);
@@ -701,9 +682,9 @@ __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclas
trace_contention_begin(lock, LCB_F_MUTEX);
}
- raw_spin_lock(&lock->wait_lock);
+ raw_spin_lock_irqsave(&lock->wait_lock, flags);
}
- raw_spin_lock(&lock->wait_lock);
+ raw_spin_lock_irqsave(&lock->wait_lock, flags);
acquired:
__set_current_state(TASK_RUNNING);
@@ -714,7 +695,7 @@ acquired:
*/
if (!ww_ctx->is_wait_die &&
!__mutex_waiter_is_first(lock, &waiter))
- __ww_mutex_check_waiters(lock, ww_ctx);
+ __ww_mutex_check_waiters(lock, ww_ctx, &wake_q);
}
__mutex_remove_waiter(lock, &waiter);
@@ -729,7 +710,8 @@ skip_wait:
if (ww_ctx)
ww_mutex_lock_acquired(ww, ww_ctx);
- raw_spin_unlock(&lock->wait_lock);
+ raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
+ wake_up_q(&wake_q);
preempt_enable();
return 0;
@@ -738,9 +720,10 @@ err:
__mutex_remove_waiter(lock, &waiter);
err_early_kill:
trace_contention_end(lock, ret);
- raw_spin_unlock(&lock->wait_lock);
+ raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
debug_mutex_free_waiter(&waiter);
mutex_release(&lock->dep_map, ip);
+ wake_up_q(&wake_q);
preempt_enable();
return ret;
}
@@ -908,6 +891,7 @@ static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigne
struct task_struct *next = NULL;
DEFINE_WAKE_Q(wake_q);
unsigned long owner;
+ unsigned long flags;
mutex_release(&lock->dep_map, ip);
@@ -934,7 +918,7 @@ static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigne
}
}
- raw_spin_lock(&lock->wait_lock);
+ raw_spin_lock_irqsave(&lock->wait_lock, flags);
debug_mutex_unlock(lock);
if (!list_empty(&lock->wait_list)) {
/* get the first entry from the wait-list: */
@@ -951,9 +935,10 @@ static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigne
if (owner & MUTEX_FLAG_HANDOFF)
__mutex_handoff(lock, next);
- raw_spin_unlock(&lock->wait_lock);
-
+ preempt_disable();
+ raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
wake_up_q(&wake_q);
+ preempt_enable();
}
#ifndef CONFIG_DEBUG_LOCK_ALLOC
diff --git a/kernel/locking/mutex.h b/kernel/locking/mutex.h
index 0b2a79c4013b..cbff35b9b7ae 100644
--- a/kernel/locking/mutex.h
+++ b/kernel/locking/mutex.h
@@ -20,6 +20,33 @@ struct mutex_waiter {
#endif
};
+/*
+ * @owner: contains: 'struct task_struct *' to the current lock owner,
+ * NULL means not owned. Since task_struct pointers are aligned at
+ * at least L1_CACHE_BYTES, we have low bits to store extra state.
+ *
+ * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
+ * Bit1 indicates unlock needs to hand the lock to the top-waiter
+ * Bit2 indicates handoff has been done and we're waiting for pickup.
+ */
+#define MUTEX_FLAG_WAITERS 0x01
+#define MUTEX_FLAG_HANDOFF 0x02
+#define MUTEX_FLAG_PICKUP 0x04
+
+#define MUTEX_FLAGS 0x07
+
+/*
+ * Internal helper function; C doesn't allow us to hide it :/
+ *
+ * DO NOT USE (outside of mutex & scheduler code).
+ */
+static inline struct task_struct *__mutex_owner(struct mutex *lock)
+{
+ if (!lock)
+ return NULL;
+ return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS);
+}
+
#ifdef CONFIG_DEBUG_MUTEXES
extern void debug_mutex_lock_common(struct mutex *lock,
struct mutex_waiter *waiter);
diff --git a/kernel/locking/osq_lock.c b/kernel/locking/osq_lock.c
index 75a6f6133866..b4233dc2c2b0 100644
--- a/kernel/locking/osq_lock.c
+++ b/kernel/locking/osq_lock.c
@@ -215,8 +215,7 @@ void osq_unlock(struct optimistic_spin_queue *lock)
/*
* Fast path for the uncontended case.
*/
- if (likely(atomic_cmpxchg_release(&lock->tail, curr,
- OSQ_UNLOCKED_VAL) == curr))
+ if (atomic_try_cmpxchg_release(&lock->tail, &curr, OSQ_UNLOCKED_VAL))
return;
/*
diff --git a/kernel/locking/qspinlock_paravirt.h b/kernel/locking/qspinlock_paravirt.h
index ac2e22502741..dc1cb90e3644 100644
--- a/kernel/locking/qspinlock_paravirt.h
+++ b/kernel/locking/qspinlock_paravirt.h
@@ -38,13 +38,13 @@
#define PV_PREV_CHECK_MASK 0xff
/*
- * Queue node uses: vcpu_running & vcpu_halted.
- * Queue head uses: vcpu_running & vcpu_hashed.
+ * Queue node uses: VCPU_RUNNING & VCPU_HALTED.
+ * Queue head uses: VCPU_RUNNING & VCPU_HASHED.
*/
enum vcpu_state {
- vcpu_running = 0,
- vcpu_halted, /* Used only in pv_wait_node */
- vcpu_hashed, /* = pv_hash'ed + vcpu_halted */
+ VCPU_RUNNING = 0,
+ VCPU_HALTED, /* Used only in pv_wait_node */
+ VCPU_HASHED, /* = pv_hash'ed + VCPU_HALTED */
};
struct pv_node {
@@ -266,7 +266,7 @@ pv_wait_early(struct pv_node *prev, int loop)
if ((loop & PV_PREV_CHECK_MASK) != 0)
return false;
- return READ_ONCE(prev->state) != vcpu_running;
+ return READ_ONCE(prev->state) != VCPU_RUNNING;
}
/*
@@ -279,7 +279,7 @@ static void pv_init_node(struct mcs_spinlock *node)
BUILD_BUG_ON(sizeof(struct pv_node) > sizeof(struct qnode));
pn->cpu = smp_processor_id();
- pn->state = vcpu_running;
+ pn->state = VCPU_RUNNING;
}
/*
@@ -308,26 +308,26 @@ static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev)
/*
* Order pn->state vs pn->locked thusly:
*
- * [S] pn->state = vcpu_halted [S] next->locked = 1
+ * [S] pn->state = VCPU_HALTED [S] next->locked = 1
* MB MB
- * [L] pn->locked [RmW] pn->state = vcpu_hashed
+ * [L] pn->locked [RmW] pn->state = VCPU_HASHED
*
* Matches the cmpxchg() from pv_kick_node().
*/
- smp_store_mb(pn->state, vcpu_halted);
+ smp_store_mb(pn->state, VCPU_HALTED);
if (!READ_ONCE(node->locked)) {
lockevent_inc(pv_wait_node);
lockevent_cond_inc(pv_wait_early, wait_early);
- pv_wait(&pn->state, vcpu_halted);
+ pv_wait(&pn->state, VCPU_HALTED);
}
/*
- * If pv_kick_node() changed us to vcpu_hashed, retain that
+ * If pv_kick_node() changed us to VCPU_HASHED, retain that
* value so that pv_wait_head_or_lock() knows to not also try
* to hash this lock.
*/
- cmpxchg(&pn->state, vcpu_halted, vcpu_running);
+ cmpxchg(&pn->state, VCPU_HALTED, VCPU_RUNNING);
/*
* If the locked flag is still not set after wakeup, it is a
@@ -357,7 +357,7 @@ static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev)
static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node)
{
struct pv_node *pn = (struct pv_node *)node;
- u8 old = vcpu_halted;
+ u8 old = VCPU_HALTED;
/*
* If the vCPU is indeed halted, advance its state to match that of
* pv_wait_node(). If OTOH this fails, the vCPU was running and will
@@ -374,7 +374,7 @@ static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node)
* subsequent writes.
*/
smp_mb__before_atomic();
- if (!try_cmpxchg_relaxed(&pn->state, &old, vcpu_hashed))
+ if (!try_cmpxchg_relaxed(&pn->state, &old, VCPU_HASHED))
return;
/*
@@ -407,7 +407,7 @@ pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node)
* If pv_kick_node() already advanced our state, we don't need to
* insert ourselves into the hash table anymore.
*/
- if (READ_ONCE(pn->state) == vcpu_hashed)
+ if (READ_ONCE(pn->state) == VCPU_HASHED)
lp = (struct qspinlock **)1;
/*
@@ -420,7 +420,7 @@ pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node)
* Set correct vCPU state to be used by queue node wait-early
* mechanism.
*/
- WRITE_ONCE(pn->state, vcpu_running);
+ WRITE_ONCE(pn->state, VCPU_RUNNING);
/*
* Set the pending bit in the active lock spinning loop to
@@ -460,7 +460,7 @@ pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node)
goto gotlock;
}
}
- WRITE_ONCE(pn->state, vcpu_hashed);
+ WRITE_ONCE(pn->state, VCPU_HASHED);
lockevent_inc(pv_wait_head);
lockevent_cond_inc(pv_wait_again, waitcnt);
pv_wait(&lock->locked, _Q_SLOW_VAL);
diff --git a/kernel/locking/rtmutex.c b/kernel/locking/rtmutex.c
index ebebd0eec7f6..ac1365afcc4a 100644
--- a/kernel/locking/rtmutex.c
+++ b/kernel/locking/rtmutex.c
@@ -34,13 +34,15 @@
static inline int __ww_mutex_add_waiter(struct rt_mutex_waiter *waiter,
struct rt_mutex *lock,
- struct ww_acquire_ctx *ww_ctx)
+ struct ww_acquire_ctx *ww_ctx,
+ struct wake_q_head *wake_q)
{
return 0;
}
static inline void __ww_mutex_check_waiters(struct rt_mutex *lock,
- struct ww_acquire_ctx *ww_ctx)
+ struct ww_acquire_ctx *ww_ctx,
+ struct wake_q_head *wake_q)
{
}
@@ -1201,7 +1203,8 @@ static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock,
struct rt_mutex_waiter *waiter,
struct task_struct *task,
struct ww_acquire_ctx *ww_ctx,
- enum rtmutex_chainwalk chwalk)
+ enum rtmutex_chainwalk chwalk,
+ struct wake_q_head *wake_q)
{
struct task_struct *owner = rt_mutex_owner(lock);
struct rt_mutex_waiter *top_waiter = waiter;
@@ -1245,7 +1248,10 @@ static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock,
/* Check whether the waiter should back out immediately */
rtm = container_of(lock, struct rt_mutex, rtmutex);
- res = __ww_mutex_add_waiter(waiter, rtm, ww_ctx);
+ preempt_disable();
+ res = __ww_mutex_add_waiter(waiter, rtm, ww_ctx, wake_q);
+ wake_up_q(wake_q);
+ preempt_enable();
if (res) {
raw_spin_lock(&task->pi_lock);
rt_mutex_dequeue(lock, waiter);
@@ -1601,6 +1607,7 @@ static int __sched rt_mutex_slowlock_block(struct rt_mutex_base *lock,
unsigned int state,
struct hrtimer_sleeper *timeout,
struct rt_mutex_waiter *waiter)
+ __releases(&lock->wait_lock) __acquires(&lock->wait_lock)
{
struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
struct task_struct *owner;
@@ -1674,12 +1681,14 @@ static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock,
* @state: The task state for sleeping
* @chwalk: Indicator whether full or partial chainwalk is requested
* @waiter: Initializer waiter for blocking
+ * @wake_q: The wake_q to wake tasks after we release the wait_lock
*/
static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
struct ww_acquire_ctx *ww_ctx,
unsigned int state,
enum rtmutex_chainwalk chwalk,
- struct rt_mutex_waiter *waiter)
+ struct rt_mutex_waiter *waiter,
+ struct wake_q_head *wake_q)
{
struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
struct ww_mutex *ww = ww_container_of(rtm);
@@ -1690,7 +1699,7 @@ static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
/* Try to acquire the lock again: */
if (try_to_take_rt_mutex(lock, current, NULL)) {
if (build_ww_mutex() && ww_ctx) {
- __ww_mutex_check_waiters(rtm, ww_ctx);
+ __ww_mutex_check_waiters(rtm, ww_ctx, wake_q);
ww_mutex_lock_acquired(ww, ww_ctx);
}
return 0;
@@ -1700,7 +1709,7 @@ static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
trace_contention_begin(lock, LCB_F_RT);
- ret = task_blocks_on_rt_mutex(lock, waiter, current, ww_ctx, chwalk);
+ ret = task_blocks_on_rt_mutex(lock, waiter, current, ww_ctx, chwalk, wake_q);
if (likely(!ret))
ret = rt_mutex_slowlock_block(lock, ww_ctx, state, NULL, waiter);
@@ -1708,7 +1717,7 @@ static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
/* acquired the lock */
if (build_ww_mutex() && ww_ctx) {
if (!ww_ctx->is_wait_die)
- __ww_mutex_check_waiters(rtm, ww_ctx);
+ __ww_mutex_check_waiters(rtm, ww_ctx, wake_q);
ww_mutex_lock_acquired(ww, ww_ctx);
}
} else {
@@ -1730,7 +1739,8 @@ static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
static inline int __rt_mutex_slowlock_locked(struct rt_mutex_base *lock,
struct ww_acquire_ctx *ww_ctx,
- unsigned int state)
+ unsigned int state,
+ struct wake_q_head *wake_q)
{
struct rt_mutex_waiter waiter;
int ret;
@@ -1739,7 +1749,7 @@ static inline int __rt_mutex_slowlock_locked(struct rt_mutex_base *lock,
waiter.ww_ctx = ww_ctx;
ret = __rt_mutex_slowlock(lock, ww_ctx, state, RT_MUTEX_MIN_CHAINWALK,
- &waiter);
+ &waiter, wake_q);
debug_rt_mutex_free_waiter(&waiter);
return ret;
@@ -1755,6 +1765,7 @@ static int __sched rt_mutex_slowlock(struct rt_mutex_base *lock,
struct ww_acquire_ctx *ww_ctx,
unsigned int state)
{
+ DEFINE_WAKE_Q(wake_q);
unsigned long flags;
int ret;
@@ -1776,8 +1787,11 @@ static int __sched rt_mutex_slowlock(struct rt_mutex_base *lock,
* irqsave/restore variants.
*/
raw_spin_lock_irqsave(&lock->wait_lock, flags);
- ret = __rt_mutex_slowlock_locked(lock, ww_ctx, state);
+ ret = __rt_mutex_slowlock_locked(lock, ww_ctx, state, &wake_q);
+ preempt_disable();
raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
+ wake_up_q(&wake_q);
+ preempt_enable();
rt_mutex_post_schedule();
return ret;
@@ -1803,8 +1817,11 @@ static __always_inline int __rt_mutex_lock(struct rt_mutex_base *lock,
/**
* rtlock_slowlock_locked - Slow path lock acquisition for RT locks
* @lock: The underlying RT mutex
+ * @wake_q: The wake_q to wake tasks after we release the wait_lock
*/
-static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock)
+static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock,
+ struct wake_q_head *wake_q)
+ __releases(&lock->wait_lock) __acquires(&lock->wait_lock)
{
struct rt_mutex_waiter waiter;
struct task_struct *owner;
@@ -1821,7 +1838,7 @@ static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock)
trace_contention_begin(lock, LCB_F_RT);
- task_blocks_on_rt_mutex(lock, &waiter, current, NULL, RT_MUTEX_MIN_CHAINWALK);
+ task_blocks_on_rt_mutex(lock, &waiter, current, NULL, RT_MUTEX_MIN_CHAINWALK, wake_q);
for (;;) {
/* Try to acquire the lock again */
@@ -1832,7 +1849,11 @@ static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock)
owner = rt_mutex_owner(lock);
else
owner = NULL;
+ preempt_disable();
raw_spin_unlock_irq(&lock->wait_lock);
+ wake_up_q(wake_q);
+ wake_q_init(wake_q);
+ preempt_enable();
if (!owner || !rtmutex_spin_on_owner(lock, &waiter, owner))
schedule_rtlock();
@@ -1857,10 +1878,14 @@ static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock)
static __always_inline void __sched rtlock_slowlock(struct rt_mutex_base *lock)
{
unsigned long flags;
+ DEFINE_WAKE_Q(wake_q);
raw_spin_lock_irqsave(&lock->wait_lock, flags);
- rtlock_slowlock_locked(lock);
+ rtlock_slowlock_locked(lock, &wake_q);
+ preempt_disable();
raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
+ wake_up_q(&wake_q);
+ preempt_enable();
}
#endif /* RT_MUTEX_BUILD_SPINLOCKS */
diff --git a/kernel/locking/rtmutex_api.c b/kernel/locking/rtmutex_api.c
index a6974d044593..33ea31d6a7b3 100644
--- a/kernel/locking/rtmutex_api.c
+++ b/kernel/locking/rtmutex_api.c
@@ -175,10 +175,10 @@ bool __sched __rt_mutex_futex_unlock(struct rt_mutex_base *lock,
}
/*
- * We've already deboosted, mark_wakeup_next_waiter() will
- * retain preempt_disabled when we drop the wait_lock, to
- * avoid inversion prior to the wakeup. preempt_disable()
- * therein pairs with rt_mutex_postunlock().
+ * mark_wakeup_next_waiter() deboosts and retains preemption
+ * disabled when dropping the wait_lock, to avoid inversion prior
+ * to the wakeup. preempt_disable() therein pairs with the
+ * preempt_enable() in rt_mutex_postunlock().
*/
mark_wakeup_next_waiter(wqh, lock);
@@ -275,6 +275,7 @@ void __sched rt_mutex_proxy_unlock(struct rt_mutex_base *lock)
* @lock: the rt_mutex to take
* @waiter: the pre-initialized rt_mutex_waiter
* @task: the task to prepare
+ * @wake_q: the wake_q to wake tasks after we release the wait_lock
*
* Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
* detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
@@ -291,7 +292,8 @@ void __sched rt_mutex_proxy_unlock(struct rt_mutex_base *lock)
*/
int __sched __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
struct rt_mutex_waiter *waiter,
- struct task_struct *task)
+ struct task_struct *task,
+ struct wake_q_head *wake_q)
{
int ret;
@@ -302,7 +304,7 @@ int __sched __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
/* We enforce deadlock detection for futexes */
ret = task_blocks_on_rt_mutex(lock, waiter, task, NULL,
- RT_MUTEX_FULL_CHAINWALK);
+ RT_MUTEX_FULL_CHAINWALK, wake_q);
if (ret && !rt_mutex_owner(lock)) {
/*
@@ -341,12 +343,16 @@ int __sched rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
struct task_struct *task)
{
int ret;
+ DEFINE_WAKE_Q(wake_q);
raw_spin_lock_irq(&lock->wait_lock);
- ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
+ ret = __rt_mutex_start_proxy_lock(lock, waiter, task, &wake_q);
if (unlikely(ret))
remove_waiter(lock, waiter);
+ preempt_disable();
raw_spin_unlock_irq(&lock->wait_lock);
+ wake_up_q(&wake_q);
+ preempt_enable();
return ret;
}
diff --git a/kernel/locking/rtmutex_common.h b/kernel/locking/rtmutex_common.h
index 1162e07cdaea..c38a2d2d4a7e 100644
--- a/kernel/locking/rtmutex_common.h
+++ b/kernel/locking/rtmutex_common.h
@@ -83,7 +83,8 @@ extern void rt_mutex_init_proxy_locked(struct rt_mutex_base *lock,
extern void rt_mutex_proxy_unlock(struct rt_mutex_base *lock);
extern int __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
struct rt_mutex_waiter *waiter,
- struct task_struct *task);
+ struct task_struct *task,
+ struct wake_q_head *);
extern int rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
struct rt_mutex_waiter *waiter,
struct task_struct *task);
diff --git a/kernel/locking/rwbase_rt.c b/kernel/locking/rwbase_rt.c
index 34a59569db6b..9f4322c07486 100644
--- a/kernel/locking/rwbase_rt.c
+++ b/kernel/locking/rwbase_rt.c
@@ -69,6 +69,7 @@ static int __sched __rwbase_read_lock(struct rwbase_rt *rwb,
unsigned int state)
{
struct rt_mutex_base *rtm = &rwb->rtmutex;
+ DEFINE_WAKE_Q(wake_q);
int ret;
rwbase_pre_schedule();
@@ -110,7 +111,7 @@ static int __sched __rwbase_read_lock(struct rwbase_rt *rwb,
* For rwlocks this returns 0 unconditionally, so the below
* !ret conditionals are optimized out.
*/
- ret = rwbase_rtmutex_slowlock_locked(rtm, state);
+ ret = rwbase_rtmutex_slowlock_locked(rtm, state, &wake_q);
/*
* On success the rtmutex is held, so there can't be a writer
@@ -121,7 +122,12 @@ static int __sched __rwbase_read_lock(struct rwbase_rt *rwb,
*/
if (!ret)
atomic_inc(&rwb->readers);
+
+ preempt_disable();
raw_spin_unlock_irq(&rtm->wait_lock);
+ wake_up_q(&wake_q);
+ preempt_enable();
+
if (!ret)
rwbase_rtmutex_unlock(rtm);
diff --git a/kernel/locking/rwsem.c b/kernel/locking/rwsem.c
index 2bbb6eca5144..2ddb827e3bea 100644
--- a/kernel/locking/rwsem.c
+++ b/kernel/locking/rwsem.c
@@ -1413,8 +1413,8 @@ static inline void __downgrade_write(struct rw_semaphore *sem)
#define rwbase_rtmutex_lock_state(rtm, state) \
__rt_mutex_lock(rtm, state)
-#define rwbase_rtmutex_slowlock_locked(rtm, state) \
- __rt_mutex_slowlock_locked(rtm, NULL, state)
+#define rwbase_rtmutex_slowlock_locked(rtm, state, wq) \
+ __rt_mutex_slowlock_locked(rtm, NULL, state, wq)
#define rwbase_rtmutex_unlock(rtm) \
__rt_mutex_unlock(rtm)
diff --git a/kernel/locking/spinlock.c b/kernel/locking/spinlock.c
index 438c6086d540..7685defd7c52 100644
--- a/kernel/locking/spinlock.c
+++ b/kernel/locking/spinlock.c
@@ -65,7 +65,7 @@ EXPORT_PER_CPU_SYMBOL(__mmiowb_state);
* towards that other CPU that it should break the lock ASAP.
*/
#define BUILD_LOCK_OPS(op, locktype) \
-void __lockfunc __raw_##op##_lock(locktype##_t *lock) \
+static void __lockfunc __raw_##op##_lock(locktype##_t *lock) \
{ \
for (;;) { \
preempt_disable(); \
@@ -77,7 +77,7 @@ void __lockfunc __raw_##op##_lock(locktype##_t *lock) \
} \
} \
\
-unsigned long __lockfunc __raw_##op##_lock_irqsave(locktype##_t *lock) \
+static unsigned long __lockfunc __raw_##op##_lock_irqsave(locktype##_t *lock) \
{ \
unsigned long flags; \
\
@@ -95,12 +95,12 @@ unsigned long __lockfunc __raw_##op##_lock_irqsave(locktype##_t *lock) \
return flags; \
} \
\
-void __lockfunc __raw_##op##_lock_irq(locktype##_t *lock) \
+static void __lockfunc __raw_##op##_lock_irq(locktype##_t *lock) \
{ \
_raw_##op##_lock_irqsave(lock); \
} \
\
-void __lockfunc __raw_##op##_lock_bh(locktype##_t *lock) \
+static void __lockfunc __raw_##op##_lock_bh(locktype##_t *lock) \
{ \
unsigned long flags; \
\
diff --git a/kernel/locking/spinlock_rt.c b/kernel/locking/spinlock_rt.c
index 38e292454fcc..db1e11b45de6 100644
--- a/kernel/locking/spinlock_rt.c
+++ b/kernel/locking/spinlock_rt.c
@@ -51,7 +51,7 @@ static __always_inline void __rt_spin_lock(spinlock_t *lock)
migrate_disable();
}
-void __sched rt_spin_lock(spinlock_t *lock)
+void __sched rt_spin_lock(spinlock_t *lock) __acquires(RCU)
{
spin_acquire(&lock->dep_map, 0, 0, _RET_IP_);
__rt_spin_lock(lock);
@@ -75,7 +75,7 @@ void __sched rt_spin_lock_nest_lock(spinlock_t *lock,
EXPORT_SYMBOL(rt_spin_lock_nest_lock);
#endif
-void __sched rt_spin_unlock(spinlock_t *lock)
+void __sched rt_spin_unlock(spinlock_t *lock) __releases(RCU)
{
spin_release(&lock->dep_map, _RET_IP_);
migrate_enable();
@@ -162,9 +162,10 @@ rwbase_rtmutex_lock_state(struct rt_mutex_base *rtm, unsigned int state)
}
static __always_inline int
-rwbase_rtmutex_slowlock_locked(struct rt_mutex_base *rtm, unsigned int state)
+rwbase_rtmutex_slowlock_locked(struct rt_mutex_base *rtm, unsigned int state,
+ struct wake_q_head *wake_q)
{
- rtlock_slowlock_locked(rtm);
+ rtlock_slowlock_locked(rtm, wake_q);
return 0;
}
@@ -225,7 +226,7 @@ int __sched rt_write_trylock(rwlock_t *rwlock)
}
EXPORT_SYMBOL(rt_write_trylock);
-void __sched rt_read_lock(rwlock_t *rwlock)
+void __sched rt_read_lock(rwlock_t *rwlock) __acquires(RCU)
{
rtlock_might_resched();
rwlock_acquire_read(&rwlock->dep_map, 0, 0, _RET_IP_);
@@ -235,7 +236,7 @@ void __sched rt_read_lock(rwlock_t *rwlock)
}
EXPORT_SYMBOL(rt_read_lock);
-void __sched rt_write_lock(rwlock_t *rwlock)
+void __sched rt_write_lock(rwlock_t *rwlock) __acquires(RCU)
{
rtlock_might_resched();
rwlock_acquire(&rwlock->dep_map, 0, 0, _RET_IP_);
@@ -246,7 +247,7 @@ void __sched rt_write_lock(rwlock_t *rwlock)
EXPORT_SYMBOL(rt_write_lock);
#ifdef CONFIG_DEBUG_LOCK_ALLOC
-void __sched rt_write_lock_nested(rwlock_t *rwlock, int subclass)
+void __sched rt_write_lock_nested(rwlock_t *rwlock, int subclass) __acquires(RCU)
{
rtlock_might_resched();
rwlock_acquire(&rwlock->dep_map, subclass, 0, _RET_IP_);
@@ -257,7 +258,7 @@ void __sched rt_write_lock_nested(rwlock_t *rwlock, int subclass)
EXPORT_SYMBOL(rt_write_lock_nested);
#endif
-void __sched rt_read_unlock(rwlock_t *rwlock)
+void __sched rt_read_unlock(rwlock_t *rwlock) __releases(RCU)
{
rwlock_release(&rwlock->dep_map, _RET_IP_);
migrate_enable();
@@ -266,7 +267,7 @@ void __sched rt_read_unlock(rwlock_t *rwlock)
}
EXPORT_SYMBOL(rt_read_unlock);
-void __sched rt_write_unlock(rwlock_t *rwlock)
+void __sched rt_write_unlock(rwlock_t *rwlock) __releases(RCU)
{
rwlock_release(&rwlock->dep_map, _RET_IP_);
rcu_read_unlock();
diff --git a/kernel/locking/test-ww_mutex.c b/kernel/locking/test-ww_mutex.c
index 10a5736a21c2..5d58b2c0ef98 100644
--- a/kernel/locking/test-ww_mutex.c
+++ b/kernel/locking/test-ww_mutex.c
@@ -62,7 +62,8 @@ static int __test_mutex(unsigned int flags)
int ret;
ww_mutex_init(&mtx.mutex, &ww_class);
- ww_acquire_init(&ctx, &ww_class);
+ if (flags & TEST_MTX_CTX)
+ ww_acquire_init(&ctx, &ww_class);
INIT_WORK_ONSTACK(&mtx.work, test_mutex_work);
init_completion(&mtx.ready);
@@ -90,7 +91,8 @@ static int __test_mutex(unsigned int flags)
ret = wait_for_completion_timeout(&mtx.done, TIMEOUT);
}
ww_mutex_unlock(&mtx.mutex);
- ww_acquire_fini(&ctx);
+ if (flags & TEST_MTX_CTX)
+ ww_acquire_fini(&ctx);
if (ret) {
pr_err("%s(flags=%x): mutual exclusion failure\n",
@@ -679,7 +681,7 @@ static int __init test_ww_mutex_init(void)
if (ret)
return ret;
- ret = stress(2047, hweight32(STRESS_ALL)*ncpus, STRESS_ALL);
+ ret = stress(2046, hweight32(STRESS_ALL)*ncpus, STRESS_ALL);
if (ret)
return ret;
diff --git a/kernel/locking/ww_mutex.h b/kernel/locking/ww_mutex.h
index 76d204b7d29c..37f025a096c9 100644
--- a/kernel/locking/ww_mutex.h
+++ b/kernel/locking/ww_mutex.h
@@ -70,14 +70,14 @@ __ww_mutex_has_waiters(struct mutex *lock)
return atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS;
}
-static inline void lock_wait_lock(struct mutex *lock)
+static inline void lock_wait_lock(struct mutex *lock, unsigned long *flags)
{
- raw_spin_lock(&lock->wait_lock);
+ raw_spin_lock_irqsave(&lock->wait_lock, *flags);
}
-static inline void unlock_wait_lock(struct mutex *lock)
+static inline void unlock_wait_lock(struct mutex *lock, unsigned long *flags)
{
- raw_spin_unlock(&lock->wait_lock);
+ raw_spin_unlock_irqrestore(&lock->wait_lock, *flags);
}
static inline void lockdep_assert_wait_lock_held(struct mutex *lock)
@@ -144,14 +144,14 @@ __ww_mutex_has_waiters(struct rt_mutex *lock)
return rt_mutex_has_waiters(&lock->rtmutex);
}
-static inline void lock_wait_lock(struct rt_mutex *lock)
+static inline void lock_wait_lock(struct rt_mutex *lock, unsigned long *flags)
{
- raw_spin_lock(&lock->rtmutex.wait_lock);
+ raw_spin_lock_irqsave(&lock->rtmutex.wait_lock, *flags);
}
-static inline void unlock_wait_lock(struct rt_mutex *lock)
+static inline void unlock_wait_lock(struct rt_mutex *lock, unsigned long *flags)
{
- raw_spin_unlock(&lock->rtmutex.wait_lock);
+ raw_spin_unlock_irqrestore(&lock->rtmutex.wait_lock, *flags);
}
static inline void lockdep_assert_wait_lock_held(struct rt_mutex *lock)
@@ -275,7 +275,7 @@ __ww_ctx_less(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
*/
static bool
__ww_mutex_die(struct MUTEX *lock, struct MUTEX_WAITER *waiter,
- struct ww_acquire_ctx *ww_ctx)
+ struct ww_acquire_ctx *ww_ctx, struct wake_q_head *wake_q)
{
if (!ww_ctx->is_wait_die)
return false;
@@ -284,7 +284,7 @@ __ww_mutex_die(struct MUTEX *lock, struct MUTEX_WAITER *waiter,
#ifndef WW_RT
debug_mutex_wake_waiter(lock, waiter);
#endif
- wake_up_process(waiter->task);
+ wake_q_add(wake_q, waiter->task);
}
return true;
@@ -299,7 +299,8 @@ __ww_mutex_die(struct MUTEX *lock, struct MUTEX_WAITER *waiter,
*/
static bool __ww_mutex_wound(struct MUTEX *lock,
struct ww_acquire_ctx *ww_ctx,
- struct ww_acquire_ctx *hold_ctx)
+ struct ww_acquire_ctx *hold_ctx,
+ struct wake_q_head *wake_q)
{
struct task_struct *owner = __ww_mutex_owner(lock);
@@ -331,7 +332,7 @@ static bool __ww_mutex_wound(struct MUTEX *lock,
* wakeup pending to re-read the wounded state.
*/
if (owner != current)
- wake_up_process(owner);
+ wake_q_add(wake_q, owner);
return true;
}
@@ -352,7 +353,8 @@ static bool __ww_mutex_wound(struct MUTEX *lock,
* The current task must not be on the wait list.
*/
static void
-__ww_mutex_check_waiters(struct MUTEX *lock, struct ww_acquire_ctx *ww_ctx)
+__ww_mutex_check_waiters(struct MUTEX *lock, struct ww_acquire_ctx *ww_ctx,
+ struct wake_q_head *wake_q)
{
struct MUTEX_WAITER *cur;
@@ -364,8 +366,8 @@ __ww_mutex_check_waiters(struct MUTEX *lock, struct ww_acquire_ctx *ww_ctx)
if (!cur->ww_ctx)
continue;
- if (__ww_mutex_die(lock, cur, ww_ctx) ||
- __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx))
+ if (__ww_mutex_die(lock, cur, ww_ctx, wake_q) ||
+ __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx, wake_q))
break;
}
}
@@ -377,6 +379,9 @@ __ww_mutex_check_waiters(struct MUTEX *lock, struct ww_acquire_ctx *ww_ctx)
static __always_inline void
ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
+ DEFINE_WAKE_Q(wake_q);
+ unsigned long flags;
+
ww_mutex_lock_acquired(lock, ctx);
/*
@@ -404,9 +409,12 @@ ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
* Uh oh, we raced in fastpath, check if any of the waiters need to
* die or wound us.
*/
- lock_wait_lock(&lock->base);
- __ww_mutex_check_waiters(&lock->base, ctx);
- unlock_wait_lock(&lock->base);
+ lock_wait_lock(&lock->base, &flags);
+ __ww_mutex_check_waiters(&lock->base, ctx, &wake_q);
+ preempt_disable();
+ unlock_wait_lock(&lock->base, &flags);
+ wake_up_q(&wake_q);
+ preempt_enable();
}
static __always_inline int
@@ -488,7 +496,8 @@ __ww_mutex_check_kill(struct MUTEX *lock, struct MUTEX_WAITER *waiter,
static inline int
__ww_mutex_add_waiter(struct MUTEX_WAITER *waiter,
struct MUTEX *lock,
- struct ww_acquire_ctx *ww_ctx)
+ struct ww_acquire_ctx *ww_ctx,
+ struct wake_q_head *wake_q)
{
struct MUTEX_WAITER *cur, *pos = NULL;
bool is_wait_die;
@@ -532,7 +541,7 @@ __ww_mutex_add_waiter(struct MUTEX_WAITER *waiter,
pos = cur;
/* Wait-Die: ensure younger waiters die. */
- __ww_mutex_die(lock, cur, ww_ctx);
+ __ww_mutex_die(lock, cur, ww_ctx, wake_q);
}
__ww_waiter_add(lock, waiter, pos);
@@ -550,7 +559,7 @@ __ww_mutex_add_waiter(struct MUTEX_WAITER *waiter,
* such that either we or the fastpath will wound @ww->ctx.
*/
smp_mb();
- __ww_mutex_wound(lock, ww_ctx, ww->ctx);
+ __ww_mutex_wound(lock, ww_ctx, ww->ctx, wake_q);
}
return 0;
diff --git a/kernel/module/dups.c b/kernel/module/dups.c
index 9a92f2f8c9d3..bd2149fbe117 100644
--- a/kernel/module/dups.c
+++ b/kernel/module/dups.c
@@ -18,7 +18,6 @@
#include <linux/completion.h>
#include <linux/cred.h>
#include <linux/file.h>
-#include <linux/fdtable.h>
#include <linux/workqueue.h>
#include <linux/security.h>
#include <linux/mount.h>
diff --git a/kernel/module/kmod.c b/kernel/module/kmod.c
index 0800d9891692..25f253812512 100644
--- a/kernel/module/kmod.c
+++ b/kernel/module/kmod.c
@@ -15,7 +15,6 @@
#include <linux/completion.h>
#include <linux/cred.h>
#include <linux/file.h>
-#include <linux/fdtable.h>
#include <linux/workqueue.h>
#include <linux/security.h>
#include <linux/mount.h>
diff --git a/kernel/module/main.c b/kernel/module/main.c
index 49b9bca9de12..4490924fe24e 100644
--- a/kernel/module/main.c
+++ b/kernel/module/main.c
@@ -3202,7 +3202,7 @@ static int idempotent_init_module(struct file *f, const char __user * uargs, int
{
struct idempotent idem;
- if (!f || !(f->f_mode & FMODE_READ))
+ if (!(f->f_mode & FMODE_READ))
return -EBADF;
/* Are we the winners of the race and get to do this? */
@@ -3219,10 +3219,7 @@ static int idempotent_init_module(struct file *f, const char __user * uargs, int
SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
{
- int err;
- struct fd f;
-
- err = may_init_module();
+ int err = may_init_module();
if (err)
return err;
@@ -3233,10 +3230,10 @@ SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
|MODULE_INIT_COMPRESSED_FILE))
return -EINVAL;
- f = fdget(fd);
- err = idempotent_init_module(fd_file(f), uargs, flags);
- fdput(f);
- return err;
+ CLASS(fd, f)(fd);
+ if (fd_empty(f))
+ return -EBADF;
+ return idempotent_init_module(fd_file(f), uargs, flags);
}
/* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
diff --git a/kernel/nsproxy.c b/kernel/nsproxy.c
index dc952c3b05af..c9d97ed20122 100644
--- a/kernel/nsproxy.c
+++ b/kernel/nsproxy.c
@@ -545,12 +545,12 @@ static void commit_nsset(struct nsset *nsset)
SYSCALL_DEFINE2(setns, int, fd, int, flags)
{
- struct fd f = fdget(fd);
+ CLASS(fd, f)(fd);
struct ns_common *ns = NULL;
struct nsset nsset = {};
int err = 0;
- if (!fd_file(f))
+ if (fd_empty(f))
return -EBADF;
if (proc_ns_file(fd_file(f))) {
@@ -580,7 +580,6 @@ SYSCALL_DEFINE2(setns, int, fd, int, flags)
}
put_nsset(&nsset);
out:
- fdput(f);
return err;
}
diff --git a/kernel/padata.c b/kernel/padata.c
index d899f34558af..d51bbc76b227 100644
--- a/kernel/padata.c
+++ b/kernel/padata.c
@@ -521,13 +521,6 @@ void __init padata_do_multithreaded(struct padata_mt_job *job)
ps.chunk_size = max(ps.chunk_size, 1ul);
ps.chunk_size = roundup(ps.chunk_size, job->align);
- /*
- * chunk_size can be 0 if the caller sets min_chunk to 0. So force it
- * to at least 1 to prevent divide-by-0 panic in padata_mt_helper().`
- */
- if (!ps.chunk_size)
- ps.chunk_size = 1U;
-
list_for_each_entry(pw, &works, pw_list)
if (job->numa_aware) {
int old_node = atomic_read(&last_used_nid);
diff --git a/kernel/pid.c b/kernel/pid.c
index 2715afb77eab..115448e89c3e 100644
--- a/kernel/pid.c
+++ b/kernel/pid.c
@@ -536,11 +536,10 @@ EXPORT_SYMBOL_GPL(find_ge_pid);
struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
{
- struct fd f;
+ CLASS(fd, f)(fd);
struct pid *pid;
- f = fdget(fd);
- if (!fd_file(f))
+ if (fd_empty(f))
return ERR_PTR(-EBADF);
pid = pidfd_pid(fd_file(f));
@@ -548,8 +547,6 @@ struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
get_pid(pid);
*flags = fd_file(f)->f_flags;
}
-
- fdput(f);
return pid;
}
@@ -747,23 +744,18 @@ SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
unsigned int, flags)
{
struct pid *pid;
- struct fd f;
- int ret;
/* flags is currently unused - make sure it's unset */
if (flags)
return -EINVAL;
- f = fdget(pidfd);
- if (!fd_file(f))
+ CLASS(fd, f)(pidfd);
+ if (fd_empty(f))
return -EBADF;
pid = pidfd_pid(fd_file(f));
if (IS_ERR(pid))
- ret = PTR_ERR(pid);
- else
- ret = pidfd_getfd(pid, fd);
+ return PTR_ERR(pid);
- fdput(f);
- return ret;
+ return pidfd_getfd(pid, fd);
}
diff --git a/kernel/power/energy_model.c b/kernel/power/energy_model.c
index 927cc55ba0b3..d07faf42eace 100644
--- a/kernel/power/energy_model.c
+++ b/kernel/power/energy_model.c
@@ -628,6 +628,8 @@ int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
goto unlock;
dev->em_pd->flags |= flags;
+ dev->em_pd->min_perf_state = 0;
+ dev->em_pd->max_perf_state = nr_states - 1;
em_cpufreq_update_efficiencies(dev, dev->em_pd->em_table->state);
@@ -856,3 +858,53 @@ int em_dev_update_chip_binning(struct device *dev)
return em_recalc_and_update(dev, pd, em_table);
}
EXPORT_SYMBOL_GPL(em_dev_update_chip_binning);
+
+
+/**
+ * em_update_performance_limits() - Update Energy Model with performance
+ * limits information.
+ * @pd : Performance Domain with EM that has to be updated.
+ * @freq_min_khz : New minimum allowed frequency for this device.
+ * @freq_max_khz : New maximum allowed frequency for this device.
+ *
+ * This function allows to update the EM with information about available
+ * performance levels. It takes the minimum and maximum frequency in kHz
+ * and does internal translation to performance levels.
+ * Returns 0 on success or -EINVAL when failed.
+ */
+int em_update_performance_limits(struct em_perf_domain *pd,
+ unsigned long freq_min_khz, unsigned long freq_max_khz)
+{
+ struct em_perf_state *table;
+ int min_ps = -1;
+ int max_ps = -1;
+ int i;
+
+ if (!pd)
+ return -EINVAL;
+
+ rcu_read_lock();
+ table = em_perf_state_from_pd(pd);
+
+ for (i = 0; i < pd->nr_perf_states; i++) {
+ if (freq_min_khz == table[i].frequency)
+ min_ps = i;
+ if (freq_max_khz == table[i].frequency)
+ max_ps = i;
+ }
+ rcu_read_unlock();
+
+ /* Only update when both are found and sane */
+ if (min_ps < 0 || max_ps < 0 || max_ps < min_ps)
+ return -EINVAL;
+
+
+ /* Guard simultaneous updates and make them atomic */
+ mutex_lock(&em_pd_mutex);
+ pd->min_perf_state = min_ps;
+ pd->max_perf_state = max_ps;
+ mutex_unlock(&em_pd_mutex);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(em_update_performance_limits);
diff --git a/kernel/printk/internal.h b/kernel/printk/internal.h
index 3fcb48502adb..c6bb47666aef 100644
--- a/kernel/printk/internal.h
+++ b/kernel/printk/internal.h
@@ -53,6 +53,8 @@ int devkmsg_sysctl_set_loglvl(const struct ctl_table *table, int write,
/* Flags for a single printk record. */
enum printk_info_flags {
+ /* always show on console, ignore console_loglevel */
+ LOG_FORCE_CON = 1,
LOG_NEWLINE = 2, /* text ended with a newline */
LOG_CONT = 8, /* text is a fragment of a continuation line */
};
@@ -90,6 +92,7 @@ bool printk_percpu_data_ready(void);
void defer_console_output(void);
bool is_printk_legacy_deferred(void);
+bool is_printk_force_console(void);
u16 printk_parse_prefix(const char *text, int *level,
enum printk_info_flags *flags);
diff --git a/kernel/printk/printk.c b/kernel/printk/printk.c
index beb808f4c367..80910bc3470c 100644
--- a/kernel/printk/printk.c
+++ b/kernel/printk/printk.c
@@ -560,10 +560,11 @@ bool printk_percpu_data_ready(void)
/* Must be called under syslog_lock. */
static void latched_seq_write(struct latched_seq *ls, u64 val)
{
- raw_write_seqcount_latch(&ls->latch);
+ write_seqcount_latch_begin(&ls->latch);
ls->val[0] = val;
- raw_write_seqcount_latch(&ls->latch);
+ write_seqcount_latch(&ls->latch);
ls->val[1] = val;
+ write_seqcount_latch_end(&ls->latch);
}
/* Can be called from any context. */
@@ -574,10 +575,10 @@ static u64 latched_seq_read_nolock(struct latched_seq *ls)
u64 val;
do {
- seq = raw_read_seqcount_latch(&ls->latch);
+ seq = read_seqcount_latch(&ls->latch);
idx = seq & 0x1;
val = ls->val[idx];
- } while (raw_read_seqcount_latch_retry(&ls->latch, seq));
+ } while (read_seqcount_latch_retry(&ls->latch, seq));
return val;
}
@@ -1156,6 +1157,17 @@ static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
+static void print_log_buf_usage_stats(void)
+{
+ unsigned int descs_count = log_buf_len >> PRB_AVGBITS;
+ size_t meta_data_size;
+
+ meta_data_size = descs_count * (sizeof(struct prb_desc) + sizeof(struct printk_info));
+
+ pr_info("log buffer data + meta data: %u + %zu = %zu bytes\n",
+ log_buf_len, meta_data_size, log_buf_len + meta_data_size);
+}
+
void __init setup_log_buf(int early)
{
struct printk_info *new_infos;
@@ -1185,20 +1197,25 @@ void __init setup_log_buf(int early)
if (!early && !new_log_buf_len)
log_buf_add_cpu();
- if (!new_log_buf_len)
+ if (!new_log_buf_len) {
+ /* Show the memory stats only once. */
+ if (!early)
+ goto out;
+
return;
+ }
new_descs_count = new_log_buf_len >> PRB_AVGBITS;
if (new_descs_count == 0) {
pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
- return;
+ goto out;
}
new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
if (unlikely(!new_log_buf)) {
pr_err("log_buf_len: %lu text bytes not available\n",
new_log_buf_len);
- return;
+ goto out;
}
new_descs_size = new_descs_count * sizeof(struct prb_desc);
@@ -1261,7 +1278,7 @@ void __init setup_log_buf(int early)
prb_next_seq(&printk_rb_static) - seq);
}
- pr_info("log_buf_len: %u bytes\n", log_buf_len);
+ print_log_buf_usage_stats();
pr_info("early log buf free: %u(%u%%)\n",
free, (free * 100) / __LOG_BUF_LEN);
return;
@@ -1270,6 +1287,8 @@ err_free_descs:
memblock_free(new_descs, new_descs_size);
err_free_log_buf:
memblock_free(new_log_buf, new_log_buf_len);
+out:
+ print_log_buf_usage_stats();
}
static bool __read_mostly ignore_loglevel;
@@ -1319,11 +1338,11 @@ static void boot_delay_msec(int level)
{
unsigned long long k;
unsigned long timeout;
+ bool suppress = !is_printk_force_console() &&
+ suppress_message_printing(level);
- if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
- || suppress_message_printing(level)) {
+ if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) || suppress)
return;
- }
k = (unsigned long long)loops_per_msec * boot_delay;
@@ -2273,6 +2292,9 @@ int vprintk_store(int facility, int level,
if (dev_info)
flags |= LOG_NEWLINE;
+ if (is_printk_force_console())
+ flags |= LOG_FORCE_CON;
+
if (flags & LOG_CONT) {
prb_rec_init_wr(&r, reserve_size);
if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
@@ -2280,6 +2302,9 @@ int vprintk_store(int facility, int level,
facility, &flags, fmt, args);
r.info->text_len += text_len;
+ if (flags & LOG_FORCE_CON)
+ r.info->flags |= LOG_FORCE_CON;
+
if (flags & LOG_NEWLINE) {
r.info->flags |= LOG_NEWLINE;
prb_final_commit(&e);
@@ -2947,6 +2972,7 @@ bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
struct printk_info info;
struct printk_record r;
size_t len = 0;
+ bool force_con;
/*
* Formatting extended messages requires a separate buffer, so use the
@@ -2965,9 +2991,13 @@ bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
pmsg->seq = r.info->seq;
pmsg->dropped = r.info->seq - seq;
+ force_con = r.info->flags & LOG_FORCE_CON;
- /* Skip record that has level above the console loglevel. */
- if (may_suppress && suppress_message_printing(r.info->level))
+ /*
+ * Skip records that are not forced to be printed on consoles and that
+ * has level above the console loglevel.
+ */
+ if (!force_con && may_suppress && suppress_message_printing(r.info->level))
goto out;
if (is_extended) {
diff --git a/kernel/printk/printk_safe.c b/kernel/printk/printk_safe.c
index 2b35a9d3919d..6f94418d53ff 100644
--- a/kernel/printk/printk_safe.c
+++ b/kernel/printk/printk_safe.c
@@ -12,6 +12,24 @@
#include "internal.h"
+/* Context where printk messages are never suppressed */
+static atomic_t force_con;
+
+void printk_force_console_enter(void)
+{
+ atomic_inc(&force_con);
+}
+
+void printk_force_console_exit(void)
+{
+ atomic_dec(&force_con);
+}
+
+bool is_printk_force_console(void)
+{
+ return atomic_read(&force_con);
+}
+
static DEFINE_PER_CPU(int, printk_context);
/* Can be preempted by NMI. */
diff --git a/kernel/rcu/Kconfig b/kernel/rcu/Kconfig
index 3e079de0f5b4..b9b6bc55185d 100644
--- a/kernel/rcu/Kconfig
+++ b/kernel/rcu/Kconfig
@@ -249,16 +249,24 @@ config RCU_NOCB_CPU
workloads will incur significant increases in context-switch
rates.
- This option offloads callback invocation from the set of CPUs
- specified at boot time by the rcu_nocbs parameter. For each
- such CPU, a kthread ("rcuox/N") will be created to invoke
- callbacks, where the "N" is the CPU being offloaded, and where
- the "x" is "p" for RCU-preempt (PREEMPTION kernels) and "s" for
- RCU-sched (!PREEMPTION kernels). Nothing prevents this kthread
- from running on the specified CPUs, but (1) the kthreads may be
- preempted between each callback, and (2) affinity or cgroups can
- be used to force the kthreads to run on whatever set of CPUs is
- desired.
+ This option offloads callback invocation from the set of
+ CPUs specified at boot time by the rcu_nocbs parameter.
+ For each such CPU, a kthread ("rcuox/N") will be created to
+ invoke callbacks, where the "N" is the CPU being offloaded,
+ and where the "x" is "p" for RCU-preempt (PREEMPTION kernels)
+ and "s" for RCU-sched (!PREEMPTION kernels). This option
+ also creates another kthread for each sqrt(nr_cpu_ids) CPUs
+ ("rcuog/N", where N is the first CPU in that group to come
+ online), which handles grace periods for its group. Nothing
+ prevents these kthreads from running on the specified CPUs,
+ but (1) the kthreads may be preempted between each callback,
+ and (2) affinity or cgroups can be used to force the kthreads
+ to run on whatever set of CPUs is desired.
+
+ The sqrt(nr_cpu_ids) grouping may be overridden using the
+ rcutree.rcu_nocb_gp_stride kernel boot parameter. This can
+ be especially helpful for smaller numbers of CPUs, where
+ sqrt(nr_cpu_ids) can be a bit of a blunt instrument.
Say Y here if you need reduced OS jitter, despite added overhead.
Say N here if you are unsure.
diff --git a/kernel/rcu/rcu_segcblist.h b/kernel/rcu/rcu_segcblist.h
index 259904075636..fadc08ad4b7b 100644
--- a/kernel/rcu/rcu_segcblist.h
+++ b/kernel/rcu/rcu_segcblist.h
@@ -120,7 +120,6 @@ void rcu_segcblist_inc_len(struct rcu_segcblist *rsclp);
void rcu_segcblist_add_len(struct rcu_segcblist *rsclp, long v);
void rcu_segcblist_init(struct rcu_segcblist *rsclp);
void rcu_segcblist_disable(struct rcu_segcblist *rsclp);
-void rcu_segcblist_offload(struct rcu_segcblist *rsclp, bool offload);
bool rcu_segcblist_ready_cbs(struct rcu_segcblist *rsclp);
bool rcu_segcblist_pend_cbs(struct rcu_segcblist *rsclp);
struct rcu_head *rcu_segcblist_first_cb(struct rcu_segcblist *rsclp);
diff --git a/kernel/rcu/rcuscale.c b/kernel/rcu/rcuscale.c
index 6d37596deb1f..0f3059b1b80d 100644
--- a/kernel/rcu/rcuscale.c
+++ b/kernel/rcu/rcuscale.c
@@ -889,14 +889,14 @@ kfree_scale_init(void)
if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start < 2 * HZ)) {
pr_alert("ERROR: call_rcu() CBs are not being lazy as expected!\n");
- WARN_ON_ONCE(1);
- return -1;
+ firsterr = -1;
+ goto unwind;
}
if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start > 3 * HZ)) {
pr_alert("ERROR: call_rcu() CBs are being too lazy!\n");
- WARN_ON_ONCE(1);
- return -1;
+ firsterr = -1;
+ goto unwind;
}
}
diff --git a/kernel/rcu/rcutorture.c b/kernel/rcu/rcutorture.c
index bb75dbf5c800..612d27690335 100644
--- a/kernel/rcu/rcutorture.c
+++ b/kernel/rcu/rcutorture.c
@@ -57,9 +57,9 @@ MODULE_AUTHOR("Paul E. McKenney <paulmck@linux.ibm.com> and Josh Triplett <josh@
/* Bits for ->extendables field, extendables param, and related definitions. */
#define RCUTORTURE_RDR_SHIFT_1 8 /* Put SRCU index in upper bits. */
-#define RCUTORTURE_RDR_MASK_1 (1 << RCUTORTURE_RDR_SHIFT_1)
-#define RCUTORTURE_RDR_SHIFT_2 9 /* Put SRCU index in upper bits. */
-#define RCUTORTURE_RDR_MASK_2 (1 << RCUTORTURE_RDR_SHIFT_2)
+#define RCUTORTURE_RDR_MASK_1 (0xff << RCUTORTURE_RDR_SHIFT_1)
+#define RCUTORTURE_RDR_SHIFT_2 16 /* Put SRCU index in upper bits. */
+#define RCUTORTURE_RDR_MASK_2 (0xff << RCUTORTURE_RDR_SHIFT_2)
#define RCUTORTURE_RDR_BH 0x01 /* Extend readers by disabling bh. */
#define RCUTORTURE_RDR_IRQ 0x02 /* ... disabling interrupts. */
#define RCUTORTURE_RDR_PREEMPT 0x04 /* ... disabling preemption. */
@@ -71,6 +71,9 @@ MODULE_AUTHOR("Paul E. McKenney <paulmck@linux.ibm.com> and Josh Triplett <josh@
#define RCUTORTURE_MAX_EXTEND \
(RCUTORTURE_RDR_BH | RCUTORTURE_RDR_IRQ | RCUTORTURE_RDR_PREEMPT | \
RCUTORTURE_RDR_RBH | RCUTORTURE_RDR_SCHED)
+#define RCUTORTURE_RDR_ALLBITS \
+ (RCUTORTURE_MAX_EXTEND | RCUTORTURE_RDR_RCU_1 | RCUTORTURE_RDR_RCU_2 | \
+ RCUTORTURE_RDR_MASK_1 | RCUTORTURE_RDR_MASK_2)
#define RCUTORTURE_RDR_MAX_LOOPS 0x7 /* Maximum reader extensions. */
/* Must be power of two minus one. */
#define RCUTORTURE_RDR_MAX_SEGS (RCUTORTURE_RDR_MAX_LOOPS + 3)
@@ -108,6 +111,7 @@ torture_param(int, nocbs_nthreads, 0, "Number of NOCB toggle threads, 0 to disab
torture_param(int, nocbs_toggle, 1000, "Time between toggling nocb state (ms)");
torture_param(int, read_exit_delay, 13, "Delay between read-then-exit episodes (s)");
torture_param(int, read_exit_burst, 16, "# of read-then-exit bursts per episode, zero to disable");
+torture_param(int, reader_flavor, 0x1, "Reader flavors to use, one per bit.");
torture_param(int, shuffle_interval, 3, "Number of seconds between shuffles");
torture_param(int, shutdown_secs, 0, "Shutdown time (s), <= zero to disable.");
torture_param(int, stall_cpu, 0, "Stall duration (s), zero to disable.");
@@ -393,6 +397,7 @@ struct rcu_torture_ops {
int slow_gps;
int no_pi_lock;
int debug_objects;
+ int start_poll_irqsoff;
const char *name;
};
@@ -581,6 +586,7 @@ static struct rcu_torture_ops rcu_ops = {
.can_boost = IS_ENABLED(CONFIG_RCU_BOOST),
.extendables = RCUTORTURE_MAX_EXTEND,
.debug_objects = 1,
+ .start_poll_irqsoff = 1,
.name = "rcu"
};
@@ -641,10 +647,25 @@ static void srcu_get_gp_data(int *flags, unsigned long *gp_seq)
static int srcu_torture_read_lock(void)
{
- if (cur_ops == &srcud_ops)
- return srcu_read_lock_nmisafe(srcu_ctlp);
- else
- return srcu_read_lock(srcu_ctlp);
+ int idx;
+ int ret = 0;
+
+ if ((reader_flavor & 0x1) || !(reader_flavor & 0x7)) {
+ idx = srcu_read_lock(srcu_ctlp);
+ WARN_ON_ONCE(idx & ~0x1);
+ ret += idx;
+ }
+ if (reader_flavor & 0x2) {
+ idx = srcu_read_lock_nmisafe(srcu_ctlp);
+ WARN_ON_ONCE(idx & ~0x1);
+ ret += idx << 1;
+ }
+ if (reader_flavor & 0x4) {
+ idx = srcu_read_lock_lite(srcu_ctlp);
+ WARN_ON_ONCE(idx & ~0x1);
+ ret += idx << 2;
+ }
+ return ret;
}
static void
@@ -668,10 +689,13 @@ srcu_read_delay(struct torture_random_state *rrsp, struct rt_read_seg *rtrsp)
static void srcu_torture_read_unlock(int idx)
{
- if (cur_ops == &srcud_ops)
- srcu_read_unlock_nmisafe(srcu_ctlp, idx);
- else
- srcu_read_unlock(srcu_ctlp, idx);
+ WARN_ON_ONCE((reader_flavor && (idx & ~reader_flavor)) || (!reader_flavor && (idx & ~0x1)));
+ if (reader_flavor & 0x4)
+ srcu_read_unlock_lite(srcu_ctlp, (idx & 0x4) >> 2);
+ if (reader_flavor & 0x2)
+ srcu_read_unlock_nmisafe(srcu_ctlp, (idx & 0x2) >> 1);
+ if ((reader_flavor & 0x1) || !(reader_flavor & 0x7))
+ srcu_read_unlock(srcu_ctlp, idx & 0x1);
}
static int torture_srcu_read_lock_held(void)
@@ -1059,8 +1083,13 @@ static bool rcu_torture_boost_failed(unsigned long gp_state, unsigned long *star
// At most one persisted message per boost test.
j = jiffies;
lp = READ_ONCE(last_persist);
- if (time_after(j, lp + mininterval) && cmpxchg(&last_persist, lp, j) == lp)
- pr_info("Boost inversion persisted: No QS from CPU %d\n", cpu);
+ if (time_after(j, lp + mininterval) &&
+ cmpxchg(&last_persist, lp, j) == lp) {
+ if (cpu < 0)
+ pr_info("Boost inversion persisted: QS from all CPUs\n");
+ else
+ pr_info("Boost inversion persisted: No QS from CPU %d\n", cpu);
+ }
return false; // passed on a technicality
}
VERBOSE_TOROUT_STRING("rcu_torture_boost boosting failed");
@@ -1695,14 +1724,22 @@ rcu_torture_fakewriter(void *arg)
cur_ops->cond_sync_exp_full(&gp_snap_full);
break;
case RTWS_POLL_GET:
+ if (cur_ops->start_poll_irqsoff)
+ local_irq_disable();
gp_snap = cur_ops->start_gp_poll();
+ if (cur_ops->start_poll_irqsoff)
+ local_irq_enable();
while (!cur_ops->poll_gp_state(gp_snap)) {
torture_hrtimeout_jiffies(torture_random(&rand) % 16,
&rand);
}
break;
case RTWS_POLL_GET_FULL:
+ if (cur_ops->start_poll_irqsoff)
+ local_irq_disable();
cur_ops->start_gp_poll_full(&gp_snap_full);
+ if (cur_ops->start_poll_irqsoff)
+ local_irq_enable();
while (!cur_ops->poll_gp_state_full(&gp_snap_full)) {
torture_hrtimeout_jiffies(torture_random(&rand) % 16,
&rand);
@@ -1820,7 +1857,7 @@ static void rcutorture_one_extend(int *readstate, int newstate,
int statesold = *readstate & ~newstate;
WARN_ON_ONCE(idxold2 < 0);
- WARN_ON_ONCE((idxold2 >> RCUTORTURE_RDR_SHIFT_2) > 1);
+ WARN_ON_ONCE(idxold2 & ~RCUTORTURE_RDR_ALLBITS);
rtrsp->rt_readstate = newstate;
/* First, put new protection in place to avoid critical-section gap. */
@@ -1835,9 +1872,9 @@ static void rcutorture_one_extend(int *readstate, int newstate,
if (statesnew & RCUTORTURE_RDR_SCHED)
rcu_read_lock_sched();
if (statesnew & RCUTORTURE_RDR_RCU_1)
- idxnew1 = (cur_ops->readlock() & 0x1) << RCUTORTURE_RDR_SHIFT_1;
+ idxnew1 = (cur_ops->readlock() << RCUTORTURE_RDR_SHIFT_1) & RCUTORTURE_RDR_MASK_1;
if (statesnew & RCUTORTURE_RDR_RCU_2)
- idxnew2 = (cur_ops->readlock() & 0x1) << RCUTORTURE_RDR_SHIFT_2;
+ idxnew2 = (cur_ops->readlock() << RCUTORTURE_RDR_SHIFT_2) & RCUTORTURE_RDR_MASK_2;
/*
* Next, remove old protection, in decreasing order of strength
@@ -1857,7 +1894,7 @@ static void rcutorture_one_extend(int *readstate, int newstate,
if (statesold & RCUTORTURE_RDR_RBH)
rcu_read_unlock_bh();
if (statesold & RCUTORTURE_RDR_RCU_2) {
- cur_ops->readunlock((idxold2 >> RCUTORTURE_RDR_SHIFT_2) & 0x1);
+ cur_ops->readunlock((idxold2 & RCUTORTURE_RDR_MASK_2) >> RCUTORTURE_RDR_SHIFT_2);
WARN_ON_ONCE(idxnew2 != -1);
idxold2 = 0;
}
@@ -1867,7 +1904,7 @@ static void rcutorture_one_extend(int *readstate, int newstate,
lockit = !cur_ops->no_pi_lock && !statesnew && !(torture_random(trsp) & 0xffff);
if (lockit)
raw_spin_lock_irqsave(&current->pi_lock, flags);
- cur_ops->readunlock((idxold1 >> RCUTORTURE_RDR_SHIFT_1) & 0x1);
+ cur_ops->readunlock((idxold1 & RCUTORTURE_RDR_MASK_1) >> RCUTORTURE_RDR_SHIFT_1);
WARN_ON_ONCE(idxnew1 != -1);
idxold1 = 0;
if (lockit)
@@ -1882,16 +1919,13 @@ static void rcutorture_one_extend(int *readstate, int newstate,
if (idxnew1 == -1)
idxnew1 = idxold1 & RCUTORTURE_RDR_MASK_1;
WARN_ON_ONCE(idxnew1 < 0);
- if (WARN_ON_ONCE((idxnew1 >> RCUTORTURE_RDR_SHIFT_1) > 1))
- pr_info("Unexpected idxnew1 value of %#x\n", idxnew1);
if (idxnew2 == -1)
idxnew2 = idxold2 & RCUTORTURE_RDR_MASK_2;
WARN_ON_ONCE(idxnew2 < 0);
- WARN_ON_ONCE((idxnew2 >> RCUTORTURE_RDR_SHIFT_2) > 1);
*readstate = idxnew1 | idxnew2 | newstate;
WARN_ON_ONCE(*readstate < 0);
- if (WARN_ON_ONCE((*readstate >> RCUTORTURE_RDR_SHIFT_2) > 1))
- pr_info("Unexpected idxnew2 value of %#x\n", idxnew2);
+ if (WARN_ON_ONCE(*readstate & ~RCUTORTURE_RDR_ALLBITS))
+ pr_info("Unexpected readstate value of %#x\n", *readstate);
}
/* Return the biggest extendables mask given current RCU and boot parameters. */
@@ -1916,7 +1950,7 @@ rcutorture_extend_mask(int oldmask, struct torture_random_state *trsp)
unsigned long preempts_irq = preempts | RCUTORTURE_RDR_IRQ;
unsigned long bhs = RCUTORTURE_RDR_BH | RCUTORTURE_RDR_RBH;
- WARN_ON_ONCE(mask >> RCUTORTURE_RDR_SHIFT_1);
+ WARN_ON_ONCE(mask >> RCUTORTURE_RDR_SHIFT_1); // Can't have reader idx bits.
/* Mostly only one bit (need preemption!), sometimes lots of bits. */
if (!(randmask1 & 0x7))
mask = mask & randmask2;
@@ -2389,6 +2423,7 @@ rcu_torture_print_module_parms(struct rcu_torture_ops *cur_ops, const char *tag)
"n_barrier_cbs=%d "
"onoff_interval=%d onoff_holdoff=%d "
"read_exit_delay=%d read_exit_burst=%d "
+ "reader_flavor=%x "
"nocbs_nthreads=%d nocbs_toggle=%d "
"test_nmis=%d\n",
torture_type, tag, nrealreaders, nfakewriters,
@@ -2401,6 +2436,7 @@ rcu_torture_print_module_parms(struct rcu_torture_ops *cur_ops, const char *tag)
n_barrier_cbs,
onoff_interval, onoff_holdoff,
read_exit_delay, read_exit_burst,
+ reader_flavor,
nocbs_nthreads, nocbs_toggle,
test_nmis);
}
@@ -2440,6 +2476,14 @@ static int rcutorture_booster_init(unsigned int cpu)
WARN_ON_ONCE(!t);
sp.sched_priority = 2;
sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
+#ifdef CONFIG_IRQ_FORCED_THREADING
+ if (force_irqthreads()) {
+ t = per_cpu(ktimerd, cpu);
+ WARN_ON_ONCE(!t);
+ sp.sched_priority = 2;
+ sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
+ }
+#endif
}
/* Don't allow time recalculation while creating a new task. */
diff --git a/kernel/rcu/refscale.c b/kernel/rcu/refscale.c
index 0db9db73f57f..aacfcc9838b3 100644
--- a/kernel/rcu/refscale.c
+++ b/kernel/rcu/refscale.c
@@ -75,6 +75,9 @@ MODULE_PARM_DESC(scale_type, "Type of test (rcu, srcu, refcnt, rwsem, rwlock.");
torture_param(int, verbose, 0, "Enable verbose debugging printk()s");
torture_param(int, verbose_batched, 0, "Batch verbose debugging printk()s");
+// Number of seconds to extend warm-up and cool-down for multiple guest OSes
+torture_param(long, guest_os_delay, 0,
+ "Number of seconds to extend warm-up/cool-down for multiple guest OSes.");
// Wait until there are multiple CPUs before starting test.
torture_param(int, holdoff, IS_BUILTIN(CONFIG_RCU_REF_SCALE_TEST) ? 10 : 0,
"Holdoff time before test start (s)");
@@ -212,6 +215,36 @@ static const struct ref_scale_ops srcu_ops = {
.name = "srcu"
};
+static void srcu_lite_ref_scale_read_section(const int nloops)
+{
+ int i;
+ int idx;
+
+ for (i = nloops; i >= 0; i--) {
+ idx = srcu_read_lock_lite(srcu_ctlp);
+ srcu_read_unlock_lite(srcu_ctlp, idx);
+ }
+}
+
+static void srcu_lite_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
+{
+ int i;
+ int idx;
+
+ for (i = nloops; i >= 0; i--) {
+ idx = srcu_read_lock_lite(srcu_ctlp);
+ un_delay(udl, ndl);
+ srcu_read_unlock_lite(srcu_ctlp, idx);
+ }
+}
+
+static const struct ref_scale_ops srcu_lite_ops = {
+ .init = rcu_sync_scale_init,
+ .readsection = srcu_lite_ref_scale_read_section,
+ .delaysection = srcu_lite_ref_scale_delay_section,
+ .name = "srcu-lite"
+};
+
#ifdef CONFIG_TASKS_RCU
// Definitions for RCU Tasks ref scale testing: Empty read markers.
@@ -801,6 +834,18 @@ static void rcu_scale_one_reader(void)
cur_ops->delaysection(loops, readdelay / 1000, readdelay % 1000);
}
+// Warm up cache, or, if needed run a series of rcu_scale_one_reader()
+// to allow multiple rcuscale guest OSes to collect mutually valid data.
+static void rcu_scale_warm_cool(void)
+{
+ unsigned long jdone = jiffies + (guest_os_delay > 0 ? guest_os_delay * HZ : -1);
+
+ do {
+ rcu_scale_one_reader();
+ cond_resched();
+ } while (time_before(jiffies, jdone));
+}
+
// Reader kthread. Repeatedly does empty RCU read-side
// critical section, minimizing update-side interference.
static int
@@ -829,7 +874,7 @@ repeat:
goto end;
// Make sure that the CPU is affinitized appropriately during testing.
- WARN_ON_ONCE(raw_smp_processor_id() != me);
+ WARN_ON_ONCE(raw_smp_processor_id() != me % nr_cpu_ids);
WRITE_ONCE(rt->start_reader, 0);
if (!atomic_dec_return(&n_started))
@@ -957,6 +1002,7 @@ static int main_func(void *arg)
schedule_timeout_uninterruptible(1);
// Start exp readers up per experiment
+ rcu_scale_warm_cool();
for (exp = 0; exp < nruns && !torture_must_stop(); exp++) {
if (torture_must_stop())
goto end;
@@ -987,6 +1033,7 @@ static int main_func(void *arg)
result_avg[exp] = div_u64(1000 * process_durations(nreaders), nreaders * loops);
}
+ rcu_scale_warm_cool();
// Print the average of all experiments
SCALEOUT("END OF TEST. Calculating average duration per loop (nanoseconds)...\n");
@@ -1082,9 +1129,10 @@ ref_scale_init(void)
long i;
int firsterr = 0;
static const struct ref_scale_ops *scale_ops[] = {
- &rcu_ops, &srcu_ops, RCU_TRACE_OPS RCU_TASKS_OPS &refcnt_ops, &rwlock_ops,
- &rwsem_ops, &lock_ops, &lock_irq_ops, &acqrel_ops, &clock_ops, &jiffies_ops,
- &typesafe_ref_ops, &typesafe_lock_ops, &typesafe_seqlock_ops,
+ &rcu_ops, &srcu_ops, &srcu_lite_ops, RCU_TRACE_OPS RCU_TASKS_OPS
+ &refcnt_ops, &rwlock_ops, &rwsem_ops, &lock_ops, &lock_irq_ops, &acqrel_ops,
+ &clock_ops, &jiffies_ops, &typesafe_ref_ops, &typesafe_lock_ops,
+ &typesafe_seqlock_ops,
};
if (!torture_init_begin(scale_type, verbose))
diff --git a/kernel/rcu/srcutiny.c b/kernel/rcu/srcutiny.c
index 549c03336ee9..4dcbf8aa80ff 100644
--- a/kernel/rcu/srcutiny.c
+++ b/kernel/rcu/srcutiny.c
@@ -122,8 +122,8 @@ void srcu_drive_gp(struct work_struct *wp)
ssp = container_of(wp, struct srcu_struct, srcu_work);
preempt_disable(); // Needed for PREEMPT_AUTO
if (ssp->srcu_gp_running || ULONG_CMP_GE(ssp->srcu_idx, READ_ONCE(ssp->srcu_idx_max))) {
- return; /* Already running or nothing to do. */
preempt_enable();
+ return; /* Already running or nothing to do. */
}
/* Remove recently arrived callbacks and wait for readers. */
diff --git a/kernel/rcu/srcutree.c b/kernel/rcu/srcutree.c
index 31706e3293bc..5e2e53464794 100644
--- a/kernel/rcu/srcutree.c
+++ b/kernel/rcu/srcutree.c
@@ -128,7 +128,7 @@ static void init_srcu_struct_data(struct srcu_struct *ssp)
* Initialize the per-CPU srcu_data array, which feeds into the
* leaves of the srcu_node tree.
*/
- WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
+ BUILD_BUG_ON(ARRAY_SIZE(sdp->srcu_lock_count) !=
ARRAY_SIZE(sdp->srcu_unlock_count));
for_each_possible_cpu(cpu) {
sdp = per_cpu_ptr(ssp->sda, cpu);
@@ -187,7 +187,7 @@ static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags)
/* Each pass through this loop initializes one srcu_node structure. */
srcu_for_each_node_breadth_first(ssp, snp) {
spin_lock_init(&ACCESS_PRIVATE(snp, lock));
- WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
+ BUILD_BUG_ON(ARRAY_SIZE(snp->srcu_have_cbs) !=
ARRAY_SIZE(snp->srcu_data_have_cbs));
for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ;
@@ -419,41 +419,60 @@ static void check_init_srcu_struct(struct srcu_struct *ssp)
}
/*
- * Returns approximate total of the readers' ->srcu_lock_count[] values
- * for the rank of per-CPU counters specified by idx.
+ * Is the current or any upcoming grace period to be expedited?
*/
-static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
+static bool srcu_gp_is_expedited(struct srcu_struct *ssp)
+{
+ struct srcu_usage *sup = ssp->srcu_sup;
+
+ return ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp));
+}
+
+/*
+ * Computes approximate total of the readers' ->srcu_lock_count[] values
+ * for the rank of per-CPU counters specified by idx, and returns true if
+ * the caller did the proper barrier (gp), and if the count of the locks
+ * matches that of the unlocks passed in.
+ */
+static bool srcu_readers_lock_idx(struct srcu_struct *ssp, int idx, bool gp, unsigned long unlocks)
{
int cpu;
+ unsigned long mask = 0;
unsigned long sum = 0;
for_each_possible_cpu(cpu) {
- struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
+ struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
- sum += atomic_long_read(&cpuc->srcu_lock_count[idx]);
+ sum += atomic_long_read(&sdp->srcu_lock_count[idx]);
+ if (IS_ENABLED(CONFIG_PROVE_RCU))
+ mask = mask | READ_ONCE(sdp->srcu_reader_flavor);
}
- return sum;
+ WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask - 1)),
+ "Mixed reader flavors for srcu_struct at %ps.\n", ssp);
+ if (mask & SRCU_READ_FLAVOR_LITE && !gp)
+ return false;
+ return sum == unlocks;
}
/*
* Returns approximate total of the readers' ->srcu_unlock_count[] values
* for the rank of per-CPU counters specified by idx.
*/
-static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
+static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx, unsigned long *rdm)
{
int cpu;
unsigned long mask = 0;
unsigned long sum = 0;
for_each_possible_cpu(cpu) {
- struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
+ struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
- sum += atomic_long_read(&cpuc->srcu_unlock_count[idx]);
- if (IS_ENABLED(CONFIG_PROVE_RCU))
- mask = mask | READ_ONCE(cpuc->srcu_nmi_safety);
+ sum += atomic_long_read(&sdp->srcu_unlock_count[idx]);
+ mask = mask | READ_ONCE(sdp->srcu_reader_flavor);
}
- WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask >> 1)),
- "Mixed NMI-safe readers for srcu_struct at %ps.\n", ssp);
+ WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask - 1)),
+ "Mixed reader flavors for srcu_struct at %ps.\n", ssp);
+ *rdm = mask;
return sum;
}
@@ -463,22 +482,28 @@ static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
*/
static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
{
+ bool did_gp;
+ unsigned long rdm;
unsigned long unlocks;
- unlocks = srcu_readers_unlock_idx(ssp, idx);
+ unlocks = srcu_readers_unlock_idx(ssp, idx, &rdm);
+ did_gp = !!(rdm & SRCU_READ_FLAVOR_LITE);
/*
* Make sure that a lock is always counted if the corresponding
* unlock is counted. Needs to be a smp_mb() as the read side may
* contain a read from a variable that is written to before the
* synchronize_srcu() in the write side. In this case smp_mb()s
- * A and B act like the store buffering pattern.
+ * A and B (or X and Y) act like the store buffering pattern.
*
- * This smp_mb() also pairs with smp_mb() C to prevent accesses
- * after the synchronize_srcu() from being executed before the
- * grace period ends.
+ * This smp_mb() also pairs with smp_mb() C (or, in the case of X,
+ * Z) to prevent accesses after the synchronize_srcu() from being
+ * executed before the grace period ends.
*/
- smp_mb(); /* A */
+ if (!did_gp)
+ smp_mb(); /* A */
+ else
+ synchronize_rcu(); /* X */
/*
* If the locks are the same as the unlocks, then there must have
@@ -536,7 +561,7 @@ static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
* which are unlikely to be configured with an address space fully
* populated with memory, at least not anytime soon.
*/
- return srcu_readers_lock_idx(ssp, idx) == unlocks;
+ return srcu_readers_lock_idx(ssp, idx, did_gp, unlocks);
}
/**
@@ -554,12 +579,12 @@ static bool srcu_readers_active(struct srcu_struct *ssp)
unsigned long sum = 0;
for_each_possible_cpu(cpu) {
- struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
+ struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
- sum += atomic_long_read(&cpuc->srcu_lock_count[0]);
- sum += atomic_long_read(&cpuc->srcu_lock_count[1]);
- sum -= atomic_long_read(&cpuc->srcu_unlock_count[0]);
- sum -= atomic_long_read(&cpuc->srcu_unlock_count[1]);
+ sum += atomic_long_read(&sdp->srcu_lock_count[0]);
+ sum += atomic_long_read(&sdp->srcu_lock_count[1]);
+ sum -= atomic_long_read(&sdp->srcu_unlock_count[0]);
+ sum -= atomic_long_read(&sdp->srcu_unlock_count[1]);
}
return sum;
}
@@ -622,7 +647,7 @@ static unsigned long srcu_get_delay(struct srcu_struct *ssp)
unsigned long jbase = SRCU_INTERVAL;
struct srcu_usage *sup = ssp->srcu_sup;
- if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp)))
+ if (srcu_gp_is_expedited(ssp))
jbase = 0;
if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) {
j = jiffies - 1;
@@ -687,28 +712,28 @@ void cleanup_srcu_struct(struct srcu_struct *ssp)
}
EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
-#ifdef CONFIG_PROVE_RCU
/*
- * Check for consistent NMI safety.
+ * Check for consistent reader flavor.
*/
-void srcu_check_nmi_safety(struct srcu_struct *ssp, bool nmi_safe)
+void __srcu_check_read_flavor(struct srcu_struct *ssp, int read_flavor)
{
- int nmi_safe_mask = 1 << nmi_safe;
- int old_nmi_safe_mask;
+ int old_read_flavor;
struct srcu_data *sdp;
- /* NMI-unsafe use in NMI is a bad sign */
- WARN_ON_ONCE(!nmi_safe && in_nmi());
+ /* NMI-unsafe use in NMI is a bad sign, as is multi-bit read_flavor values. */
+ WARN_ON_ONCE((read_flavor != SRCU_READ_FLAVOR_NMI) && in_nmi());
+ WARN_ON_ONCE(read_flavor & (read_flavor - 1));
+
sdp = raw_cpu_ptr(ssp->sda);
- old_nmi_safe_mask = READ_ONCE(sdp->srcu_nmi_safety);
- if (!old_nmi_safe_mask) {
- WRITE_ONCE(sdp->srcu_nmi_safety, nmi_safe_mask);
- return;
+ old_read_flavor = READ_ONCE(sdp->srcu_reader_flavor);
+ if (!old_read_flavor) {
+ old_read_flavor = cmpxchg(&sdp->srcu_reader_flavor, 0, read_flavor);
+ if (!old_read_flavor)
+ return;
}
- WARN_ONCE(old_nmi_safe_mask != nmi_safe_mask, "CPU %d old state %d new state %d\n", sdp->cpu, old_nmi_safe_mask, nmi_safe_mask);
+ WARN_ONCE(old_read_flavor != read_flavor, "CPU %d old state %d new state %d\n", sdp->cpu, old_read_flavor, read_flavor);
}
-EXPORT_SYMBOL_GPL(srcu_check_nmi_safety);
-#endif /* CONFIG_PROVE_RCU */
+EXPORT_SYMBOL_GPL(__srcu_check_read_flavor);
/*
* Counts the new reader in the appropriate per-CPU element of the
@@ -867,7 +892,7 @@ static void srcu_gp_end(struct srcu_struct *ssp)
spin_lock_irq_rcu_node(sup);
idx = rcu_seq_state(sup->srcu_gp_seq);
WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
- if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp)))
+ if (srcu_gp_is_expedited(ssp))
cbdelay = 0;
WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns());
@@ -1122,6 +1147,8 @@ static void srcu_flip(struct srcu_struct *ssp)
* it stays until either (1) Compilers learn about this sort of
* control dependency or (2) Some production workload running on
* a production system is unduly delayed by this slowpath smp_mb().
+ * Except for _lite() readers, where it is inoperative, which
+ * means that it is a good thing that it is redundant.
*/
smp_mb(); /* E */ /* Pairs with B and C. */
@@ -1139,7 +1166,9 @@ static void srcu_flip(struct srcu_struct *ssp)
}
/*
- * If SRCU is likely idle, return true, otherwise return false.
+ * If SRCU is likely idle, in other words, the next SRCU grace period
+ * should be expedited, return true, otherwise return false. Except that
+ * in the presence of _lite() readers, always return false.
*
* Note that it is OK for several current from-idle requests for a new
* grace period from idle to specify expediting because they will all end
@@ -1159,7 +1188,7 @@ static void srcu_flip(struct srcu_struct *ssp)
* negligible when amortized over that time period, and the extra latency
* of a needlessly non-expedited grace period is similarly negligible.
*/
-static bool srcu_might_be_idle(struct srcu_struct *ssp)
+static bool srcu_should_expedite(struct srcu_struct *ssp)
{
unsigned long curseq;
unsigned long flags;
@@ -1168,6 +1197,9 @@ static bool srcu_might_be_idle(struct srcu_struct *ssp)
unsigned long tlast;
check_init_srcu_struct(ssp);
+ /* If _lite() readers, don't do unsolicited expediting. */
+ if (this_cpu_read(ssp->sda->srcu_reader_flavor) & SRCU_READ_FLAVOR_LITE)
+ return false;
/* If the local srcu_data structure has callbacks, not idle. */
sdp = raw_cpu_ptr(ssp->sda);
spin_lock_irqsave_rcu_node(sdp, flags);
@@ -1469,14 +1501,15 @@ EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
* Implementation of these memory-ordering guarantees is similar to
* that of synchronize_rcu().
*
- * If SRCU is likely idle, expedite the first request. This semantic
- * was provided by Classic SRCU, and is relied upon by its users, so TREE
- * SRCU must also provide it. Note that detecting idleness is heuristic
- * and subject to both false positives and negatives.
+ * If SRCU is likely idle as determined by srcu_should_expedite(),
+ * expedite the first request. This semantic was provided by Classic SRCU,
+ * and is relied upon by its users, so TREE SRCU must also provide it.
+ * Note that detecting idleness is heuristic and subject to both false
+ * positives and negatives.
*/
void synchronize_srcu(struct srcu_struct *ssp)
{
- if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
+ if (srcu_should_expedite(ssp) || rcu_gp_is_expedited())
synchronize_srcu_expedited(ssp);
else
__synchronize_srcu(ssp, true);
diff --git a/kernel/rcu/tasks.h b/kernel/rcu/tasks.h
index 4d7ee95df06e..59314da5eb60 100644
--- a/kernel/rcu/tasks.h
+++ b/kernel/rcu/tasks.h
@@ -1407,7 +1407,8 @@ static void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
*/
void synchronize_rcu_tasks_rude(void)
{
- synchronize_rcu_tasks_generic(&rcu_tasks_rude);
+ if (!IS_ENABLED(CONFIG_ARCH_WANTS_NO_INSTR) || IS_ENABLED(CONFIG_FORCE_TASKS_RUDE_RCU))
+ synchronize_rcu_tasks_generic(&rcu_tasks_rude);
}
EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
@@ -1549,22 +1550,7 @@ static void rcu_st_need_qs(struct task_struct *t, u8 v)
*/
u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new)
{
- union rcu_special ret;
- union rcu_special trs_old = READ_ONCE(t->trc_reader_special);
- union rcu_special trs_new = trs_old;
-
- if (trs_old.b.need_qs != old)
- return trs_old.b.need_qs;
- trs_new.b.need_qs = new;
-
- // Although cmpxchg() appears to KCSAN to update all four bytes,
- // only the .b.need_qs byte actually changes.
- instrument_atomic_read_write(&t->trc_reader_special.b.need_qs,
- sizeof(t->trc_reader_special.b.need_qs));
- // Avoid false-positive KCSAN failures.
- ret.s = data_race(cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s));
-
- return ret.b.need_qs;
+ return cmpxchg(&t->trc_reader_special.b.need_qs, old, new);
}
EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs);
diff --git a/kernel/rcu/tree.c b/kernel/rcu/tree.c
index b1f883fcd918..ff98233d4aa5 100644
--- a/kernel/rcu/tree.c
+++ b/kernel/rcu/tree.c
@@ -3511,7 +3511,7 @@ static int krc_count(struct kfree_rcu_cpu *krcp)
}
static void
-schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
+__schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
{
long delay, delay_left;
@@ -3526,6 +3526,16 @@ schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
}
static void
+schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
+{
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&krcp->lock, flags);
+ __schedule_delayed_monitor_work(krcp);
+ raw_spin_unlock_irqrestore(&krcp->lock, flags);
+}
+
+static void
kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
{
struct list_head bulk_ready[FREE_N_CHANNELS];
@@ -3836,7 +3846,7 @@ void kvfree_call_rcu(struct rcu_head *head, void *ptr)
// Set timer to drain after KFREE_DRAIN_JIFFIES.
if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
- schedule_delayed_monitor_work(krcp);
+ __schedule_delayed_monitor_work(krcp);
unlock_return:
krc_this_cpu_unlock(krcp, flags);
@@ -4194,7 +4204,6 @@ static void start_poll_synchronize_rcu_common(void)
struct rcu_data *rdp;
struct rcu_node *rnp;
- lockdep_assert_irqs_enabled();
local_irq_save(flags);
rdp = this_cpu_ptr(&rcu_data);
rnp = rdp->mynode;
@@ -4219,9 +4228,6 @@ static void start_poll_synchronize_rcu_common(void)
* grace period has elapsed in the meantime. If the needed grace period
* is not already slated to start, notifies RCU core of the need for that
* grace period.
- *
- * Interrupts must be enabled for the case where it is necessary to awaken
- * the grace-period kthread.
*/
unsigned long start_poll_synchronize_rcu(void)
{
@@ -4242,9 +4248,6 @@ EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
* grace period (whether normal or expedited) has elapsed in the meantime.
* If the needed grace period is not already slated to start, notifies
* RCU core of the need for that grace period.
- *
- * Interrupts must be enabled for the case where it is necessary to awaken
- * the grace-period kthread.
*/
void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
{
@@ -5580,8 +5583,7 @@ void rcu_init_geometry(void)
* Complain and fall back to the compile-time values if this
* limit is exceeded.
*/
- if (rcu_fanout_leaf < 2 ||
- rcu_fanout_leaf > sizeof(unsigned long) * 8) {
+ if (rcu_fanout_leaf < 2 || rcu_fanout_leaf > BITS_PER_LONG) {
rcu_fanout_leaf = RCU_FANOUT_LEAF;
WARN_ON(1);
return;
diff --git a/kernel/rcu/tree_nocb.h b/kernel/rcu/tree_nocb.h
index 16865475120b..2605dd234a13 100644
--- a/kernel/rcu/tree_nocb.h
+++ b/kernel/rcu/tree_nocb.h
@@ -891,7 +891,18 @@ static void nocb_cb_wait(struct rcu_data *rdp)
swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
nocb_cb_wait_cond(rdp));
if (kthread_should_park()) {
- kthread_parkme();
+ /*
+ * kthread_park() must be preceded by an rcu_barrier().
+ * But yet another rcu_barrier() might have sneaked in between
+ * the barrier callback execution and the callbacks counter
+ * decrement.
+ */
+ if (rdp->nocb_cb_sleep) {
+ rcu_nocb_lock_irqsave(rdp, flags);
+ WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist));
+ rcu_nocb_unlock_irqrestore(rdp, flags);
+ kthread_parkme();
+ }
} else if (READ_ONCE(rdp->nocb_cb_sleep)) {
WARN_ON(signal_pending(current));
trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
diff --git a/kernel/rcu/tree_plugin.h b/kernel/rcu/tree_plugin.h
index 1c7cbd145d5e..3927ea5f7955 100644
--- a/kernel/rcu/tree_plugin.h
+++ b/kernel/rcu/tree_plugin.h
@@ -183,9 +183,9 @@ static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
switch (blkd_state) {
case 0:
case RCU_EXP_TASKS:
- case RCU_EXP_TASKS + RCU_GP_BLKD:
+ case RCU_EXP_TASKS | RCU_GP_BLKD:
case RCU_GP_TASKS:
- case RCU_GP_TASKS + RCU_EXP_TASKS:
+ case RCU_GP_TASKS | RCU_EXP_TASKS:
/*
* Blocking neither GP, or first task blocking the normal
@@ -198,10 +198,10 @@ static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
case RCU_EXP_BLKD:
case RCU_GP_BLKD:
- case RCU_GP_BLKD + RCU_EXP_BLKD:
- case RCU_GP_TASKS + RCU_EXP_BLKD:
- case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
- case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
+ case RCU_GP_BLKD | RCU_EXP_BLKD:
+ case RCU_GP_TASKS | RCU_EXP_BLKD:
+ case RCU_GP_TASKS | RCU_GP_BLKD | RCU_EXP_BLKD:
+ case RCU_GP_TASKS | RCU_EXP_TASKS | RCU_GP_BLKD | RCU_EXP_BLKD:
/*
* First task arriving that blocks either GP, or first task
@@ -214,9 +214,9 @@ static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
break;
- case RCU_EXP_TASKS + RCU_EXP_BLKD:
- case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
- case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
+ case RCU_EXP_TASKS | RCU_EXP_BLKD:
+ case RCU_EXP_TASKS | RCU_GP_BLKD | RCU_EXP_BLKD:
+ case RCU_GP_TASKS | RCU_EXP_TASKS | RCU_EXP_BLKD:
/*
* Second or subsequent task blocking the expedited GP.
@@ -227,8 +227,8 @@ static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
list_add(&t->rcu_node_entry, rnp->exp_tasks);
break;
- case RCU_GP_TASKS + RCU_GP_BLKD:
- case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
+ case RCU_GP_TASKS | RCU_GP_BLKD:
+ case RCU_GP_TASKS | RCU_EXP_TASKS | RCU_GP_BLKD:
/*
* Second or subsequent task blocking the normal GP.
diff --git a/kernel/rcu/tree_stall.h b/kernel/rcu/tree_stall.h
index 4432db6d0b99..925fcdad5dea 100644
--- a/kernel/rcu/tree_stall.h
+++ b/kernel/rcu/tree_stall.h
@@ -76,36 +76,6 @@ int rcu_jiffies_till_stall_check(void)
}
EXPORT_SYMBOL_GPL(rcu_jiffies_till_stall_check);
-/**
- * rcu_gp_might_be_stalled - Is it likely that the grace period is stalled?
- *
- * Returns @true if the current grace period is sufficiently old that
- * it is reasonable to assume that it might be stalled. This can be
- * useful when deciding whether to allocate memory to enable RCU-mediated
- * freeing on the one hand or just invoking synchronize_rcu() on the other.
- * The latter is preferable when the grace period is stalled.
- *
- * Note that sampling of the .gp_start and .gp_seq fields must be done
- * carefully to avoid false positives at the beginnings and ends of
- * grace periods.
- */
-bool rcu_gp_might_be_stalled(void)
-{
- unsigned long d = rcu_jiffies_till_stall_check() / RCU_STALL_MIGHT_DIV;
- unsigned long j = jiffies;
-
- if (d < RCU_STALL_MIGHT_MIN)
- d = RCU_STALL_MIGHT_MIN;
- smp_mb(); // jiffies before .gp_seq to avoid false positives.
- if (!rcu_gp_in_progress())
- return false;
- // Long delays at this point avoids false positive, but a delay
- // of ULONG_MAX/4 jiffies voids your no-false-positive warranty.
- smp_mb(); // .gp_seq before second .gp_start
- // And ditto here.
- return !time_before(j, READ_ONCE(rcu_state.gp_start) + d);
-}
-
/* Don't do RCU CPU stall warnings during long sysrq printouts. */
void rcu_sysrq_start(void)
{
@@ -365,7 +335,7 @@ static int rcu_print_task_stall(struct rcu_node *rnp, unsigned long flags)
* that don't support NMI-based stack dumps. The NMI-triggered stack
* traces are more accurate because they are printed by the target CPU.
*/
-static void rcu_dump_cpu_stacks(void)
+static void rcu_dump_cpu_stacks(unsigned long gp_seq)
{
int cpu;
unsigned long flags;
@@ -373,15 +343,23 @@ static void rcu_dump_cpu_stacks(void)
rcu_for_each_leaf_node(rnp) {
printk_deferred_enter();
- raw_spin_lock_irqsave_rcu_node(rnp, flags);
- for_each_leaf_node_possible_cpu(rnp, cpu)
+ for_each_leaf_node_possible_cpu(rnp, cpu) {
+ if (gp_seq != data_race(rcu_state.gp_seq)) {
+ printk_deferred_exit();
+ pr_err("INFO: Stall ended during stack backtracing.\n");
+ return;
+ }
+ if (!(data_race(rnp->qsmask) & leaf_node_cpu_bit(rnp, cpu)))
+ continue;
+ raw_spin_lock_irqsave_rcu_node(rnp, flags);
if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
if (cpu_is_offline(cpu))
pr_err("Offline CPU %d blocking current GP.\n", cpu);
else
dump_cpu_task(cpu);
}
- raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
+ raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
+ }
printk_deferred_exit();
}
}
@@ -638,7 +616,7 @@ static void print_other_cpu_stall(unsigned long gp_seq, unsigned long gps)
(long)rcu_seq_current(&rcu_state.gp_seq), totqlen,
data_race(rcu_state.n_online_cpus)); // Diagnostic read
if (ndetected) {
- rcu_dump_cpu_stacks();
+ rcu_dump_cpu_stacks(gp_seq);
/* Complain about tasks blocking the grace period. */
rcu_for_each_leaf_node(rnp)
@@ -670,7 +648,7 @@ static void print_other_cpu_stall(unsigned long gp_seq, unsigned long gps)
rcu_force_quiescent_state(); /* Kick them all. */
}
-static void print_cpu_stall(unsigned long gps)
+static void print_cpu_stall(unsigned long gp_seq, unsigned long gps)
{
int cpu;
unsigned long flags;
@@ -707,7 +685,7 @@ static void print_cpu_stall(unsigned long gps)
rcu_check_gp_kthread_expired_fqs_timer();
rcu_check_gp_kthread_starvation();
- rcu_dump_cpu_stacks();
+ rcu_dump_cpu_stacks(gp_seq);
raw_spin_lock_irqsave_rcu_node(rnp, flags);
/* Rewrite if needed in case of slow consoles. */
@@ -789,7 +767,8 @@ static void check_cpu_stall(struct rcu_data *rdp)
gs2 = READ_ONCE(rcu_state.gp_seq);
if (gs1 != gs2 ||
ULONG_CMP_LT(j, js) ||
- ULONG_CMP_GE(gps, js))
+ ULONG_CMP_GE(gps, js) ||
+ !rcu_seq_state(gs2))
return; /* No stall or GP completed since entering function. */
rnp = rdp->mynode;
jn = jiffies + ULONG_MAX / 2;
@@ -810,7 +789,7 @@ static void check_cpu_stall(struct rcu_data *rdp)
pr_err("INFO: %s detected stall, but suppressed full report due to a stuck CSD-lock.\n", rcu_state.name);
} else if (self_detected) {
/* We haven't checked in, so go dump stack. */
- print_cpu_stall(gps);
+ print_cpu_stall(gs2, gps);
} else {
/* They had a few time units to dump stack, so complain. */
print_other_cpu_stall(gs2, gps);
diff --git a/kernel/scftorture.c b/kernel/scftorture.c
index 44e83a646264..d86d2d9c4624 100644
--- a/kernel/scftorture.c
+++ b/kernel/scftorture.c
@@ -97,6 +97,7 @@ struct scf_statistics {
static struct scf_statistics *scf_stats_p;
static struct task_struct *scf_torture_stats_task;
static DEFINE_PER_CPU(long long, scf_invoked_count);
+static DEFINE_PER_CPU(struct llist_head, scf_free_pool);
// Data for random primitive selection
#define SCF_PRIM_RESCHED 0
@@ -133,6 +134,7 @@ struct scf_check {
bool scfc_wait;
bool scfc_rpc;
struct completion scfc_completion;
+ struct llist_node scf_node;
};
// Use to wait for all threads to start.
@@ -148,6 +150,33 @@ static DEFINE_TORTURE_RANDOM_PERCPU(scf_torture_rand);
extern void resched_cpu(int cpu); // An alternative IPI vector.
+static void scf_add_to_free_list(struct scf_check *scfcp)
+{
+ struct llist_head *pool;
+ unsigned int cpu;
+
+ if (!scfcp)
+ return;
+ cpu = raw_smp_processor_id() % nthreads;
+ pool = &per_cpu(scf_free_pool, cpu);
+ llist_add(&scfcp->scf_node, pool);
+}
+
+static void scf_cleanup_free_list(unsigned int cpu)
+{
+ struct llist_head *pool;
+ struct llist_node *node;
+ struct scf_check *scfcp;
+
+ pool = &per_cpu(scf_free_pool, cpu);
+ node = llist_del_all(pool);
+ while (node) {
+ scfcp = llist_entry(node, struct scf_check, scf_node);
+ node = node->next;
+ kfree(scfcp);
+ }
+}
+
// Print torture statistics. Caller must ensure serialization.
static void scf_torture_stats_print(void)
{
@@ -296,7 +325,7 @@ out:
if (scfcp->scfc_rpc)
complete(&scfcp->scfc_completion);
} else {
- kfree(scfcp);
+ scf_add_to_free_list(scfcp);
}
}
@@ -320,10 +349,6 @@ static void scftorture_invoke_one(struct scf_statistics *scfp, struct torture_ra
struct scf_check *scfcp = NULL;
struct scf_selector *scfsp = scf_sel_rand(trsp);
- if (use_cpus_read_lock)
- cpus_read_lock();
- else
- preempt_disable();
if (scfsp->scfs_prim == SCF_PRIM_SINGLE || scfsp->scfs_wait) {
scfcp = kmalloc(sizeof(*scfcp), GFP_ATOMIC);
if (!scfcp) {
@@ -337,6 +362,10 @@ static void scftorture_invoke_one(struct scf_statistics *scfp, struct torture_ra
scfcp->scfc_rpc = false;
}
}
+ if (use_cpus_read_lock)
+ cpus_read_lock();
+ else
+ preempt_disable();
switch (scfsp->scfs_prim) {
case SCF_PRIM_RESCHED:
if (IS_BUILTIN(CONFIG_SCF_TORTURE_TEST)) {
@@ -363,7 +392,7 @@ static void scftorture_invoke_one(struct scf_statistics *scfp, struct torture_ra
scfp->n_single_wait_ofl++;
else
scfp->n_single_ofl++;
- kfree(scfcp);
+ scf_add_to_free_list(scfcp);
scfcp = NULL;
}
break;
@@ -391,7 +420,7 @@ static void scftorture_invoke_one(struct scf_statistics *scfp, struct torture_ra
preempt_disable();
} else {
scfp->n_single_rpc_ofl++;
- kfree(scfcp);
+ scf_add_to_free_list(scfcp);
scfcp = NULL;
}
break;
@@ -428,7 +457,7 @@ static void scftorture_invoke_one(struct scf_statistics *scfp, struct torture_ra
pr_warn("%s: Memory-ordering failure, scfs_prim: %d.\n", __func__, scfsp->scfs_prim);
atomic_inc(&n_mb_out_errs); // Leak rather than trash!
} else {
- kfree(scfcp);
+ scf_add_to_free_list(scfcp);
}
barrier(); // Prevent race-reduction compiler optimizations.
}
@@ -463,7 +492,7 @@ static int scftorture_invoker(void *arg)
// Make sure that the CPU is affinitized appropriately during testing.
curcpu = raw_smp_processor_id();
- WARN_ONCE(curcpu != scfp->cpu % nr_cpu_ids,
+ WARN_ONCE(curcpu != cpu,
"%s: Wanted CPU %d, running on %d, nr_cpu_ids = %d\n",
__func__, scfp->cpu, curcpu, nr_cpu_ids);
@@ -479,6 +508,8 @@ static int scftorture_invoker(void *arg)
VERBOSE_SCFTORTOUT("scftorture_invoker %d started", scfp->cpu);
do {
+ scf_cleanup_free_list(cpu);
+
scftorture_invoke_one(scfp, &rand);
while (cpu_is_offline(cpu) && !torture_must_stop()) {
schedule_timeout_interruptible(HZ / 5);
@@ -523,12 +554,15 @@ static void scf_torture_cleanup(void)
torture_stop_kthread("scftorture_invoker", scf_stats_p[i].task);
else
goto end;
- smp_call_function(scf_cleanup_handler, NULL, 0);
+ smp_call_function(scf_cleanup_handler, NULL, 1);
torture_stop_kthread(scf_torture_stats, scf_torture_stats_task);
scf_torture_stats_print(); // -After- the stats thread is stopped!
kfree(scf_stats_p); // -After- the last stats print has completed!
scf_stats_p = NULL;
+ for (i = 0; i < nr_cpu_ids; i++)
+ scf_cleanup_free_list(i);
+
if (atomic_read(&n_errs) || atomic_read(&n_mb_in_errs) || atomic_read(&n_mb_out_errs))
scftorture_print_module_parms("End of test: FAILURE");
else if (torture_onoff_failures())
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index a1c353a62c56..95e40895a519 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -832,7 +832,7 @@ static enum hrtimer_restart hrtick(struct hrtimer *timer)
rq_lock(rq, &rf);
update_rq_clock(rq);
- rq->curr->sched_class->task_tick(rq, rq->curr, 1);
+ rq->donor->sched_class->task_tick(rq, rq->curr, 1);
rq_unlock(rq, &rf);
return HRTIMER_NORESTART;
@@ -941,10 +941,9 @@ static inline void hrtick_rq_init(struct rq *rq)
* this avoids any races wrt polling state changes and thereby avoids
* spurious IPIs.
*/
-static inline bool set_nr_and_not_polling(struct task_struct *p)
+static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
{
- struct thread_info *ti = task_thread_info(p);
- return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
+ return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG);
}
/*
@@ -969,9 +968,9 @@ static bool set_nr_if_polling(struct task_struct *p)
}
#else
-static inline bool set_nr_and_not_polling(struct task_struct *p)
+static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
{
- set_tsk_need_resched(p);
+ set_ti_thread_flag(ti, tif);
return true;
}
@@ -1076,28 +1075,70 @@ void wake_up_q(struct wake_q_head *head)
* might also involve a cross-CPU call to trigger the scheduler on
* the target CPU.
*/
-void resched_curr(struct rq *rq)
+static void __resched_curr(struct rq *rq, int tif)
{
struct task_struct *curr = rq->curr;
+ struct thread_info *cti = task_thread_info(curr);
int cpu;
lockdep_assert_rq_held(rq);
- if (test_tsk_need_resched(curr))
+ /*
+ * Always immediately preempt the idle task; no point in delaying doing
+ * actual work.
+ */
+ if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY)
+ tif = TIF_NEED_RESCHED;
+
+ if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED))
return;
cpu = cpu_of(rq);
if (cpu == smp_processor_id()) {
- set_tsk_need_resched(curr);
- set_preempt_need_resched();
+ set_ti_thread_flag(cti, tif);
+ if (tif == TIF_NEED_RESCHED)
+ set_preempt_need_resched();
return;
}
- if (set_nr_and_not_polling(curr))
- smp_send_reschedule(cpu);
- else
+ if (set_nr_and_not_polling(cti, tif)) {
+ if (tif == TIF_NEED_RESCHED)
+ smp_send_reschedule(cpu);
+ } else {
trace_sched_wake_idle_without_ipi(cpu);
+ }
+}
+
+void resched_curr(struct rq *rq)
+{
+ __resched_curr(rq, TIF_NEED_RESCHED);
+}
+
+#ifdef CONFIG_PREEMPT_DYNAMIC
+static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy);
+static __always_inline bool dynamic_preempt_lazy(void)
+{
+ return static_branch_unlikely(&sk_dynamic_preempt_lazy);
+}
+#else
+static __always_inline bool dynamic_preempt_lazy(void)
+{
+ return IS_ENABLED(CONFIG_PREEMPT_LAZY);
+}
+#endif
+
+static __always_inline int get_lazy_tif_bit(void)
+{
+ if (dynamic_preempt_lazy())
+ return TIF_NEED_RESCHED_LAZY;
+
+ return TIF_NEED_RESCHED;
+}
+
+void resched_curr_lazy(struct rq *rq)
+{
+ __resched_curr(rq, get_lazy_tif_bit());
}
void resched_cpu(int cpu)
@@ -1192,7 +1233,7 @@ static void wake_up_idle_cpu(int cpu)
* and testing of the above solutions didn't appear to report
* much benefits.
*/
- if (set_nr_and_not_polling(rq->idle))
+ if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED))
smp_send_reschedule(cpu);
else
trace_sched_wake_idle_without_ipi(cpu);
@@ -1399,7 +1440,7 @@ void set_load_weight(struct task_struct *p, bool update_load)
* requests are serialized using a mutex to reduce the risk of conflicting
* updates or API abuses.
*/
-static DEFINE_MUTEX(uclamp_mutex);
+static __maybe_unused DEFINE_MUTEX(uclamp_mutex);
/* Max allowed minimum utilization */
static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
@@ -2024,10 +2065,10 @@ void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
*/
uclamp_rq_inc(rq, p);
- if (!(flags & ENQUEUE_RESTORE)) {
+ psi_enqueue(p, flags);
+
+ if (!(flags & ENQUEUE_RESTORE))
sched_info_enqueue(rq, p);
- psi_enqueue(p, flags & ENQUEUE_MIGRATED);
- }
if (sched_core_enabled(rq))
sched_core_enqueue(rq, p);
@@ -2044,10 +2085,10 @@ inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
if (!(flags & DEQUEUE_NOCLOCK))
update_rq_clock(rq);
- if (!(flags & DEQUEUE_SAVE)) {
+ if (!(flags & DEQUEUE_SAVE))
sched_info_dequeue(rq, p);
- psi_dequeue(p, !(flags & DEQUEUE_SLEEP));
- }
+
+ psi_dequeue(p, flags);
/*
* Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
@@ -2135,16 +2176,18 @@ void check_class_changed(struct rq *rq, struct task_struct *p,
void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
{
- if (p->sched_class == rq->curr->sched_class)
- rq->curr->sched_class->wakeup_preempt(rq, p, flags);
- else if (sched_class_above(p->sched_class, rq->curr->sched_class))
+ struct task_struct *donor = rq->donor;
+
+ if (p->sched_class == donor->sched_class)
+ donor->sched_class->wakeup_preempt(rq, p, flags);
+ else if (sched_class_above(p->sched_class, donor->sched_class))
resched_curr(rq);
/*
* A queue event has occurred, and we're going to schedule. In
* this case, we can save a useless back to back clock update.
*/
- if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
+ if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr))
rq_clock_skip_update(rq);
}
@@ -2620,9 +2663,7 @@ int push_cpu_stop(void *arg)
// XXX validate p is still the highest prio task
if (task_rq(p) == rq) {
- deactivate_task(rq, p, 0);
- set_task_cpu(p, lowest_rq->cpu);
- activate_task(lowest_rq, p, 0);
+ move_queued_task_locked(rq, lowest_rq, p);
resched_curr(lowest_rq);
}
@@ -2682,7 +2723,7 @@ __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
lockdep_assert_held(&p->pi_lock);
queued = task_on_rq_queued(p);
- running = task_current(rq, p);
+ running = task_current_donor(rq, p);
if (queued) {
/*
@@ -2696,6 +2737,7 @@ __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
put_prev_task(rq, p);
p->sched_class->set_cpus_allowed(p, ctx);
+ mm_set_cpus_allowed(p->mm, ctx->new_mask);
if (queued)
enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
@@ -3308,9 +3350,7 @@ static void __migrate_swap_task(struct task_struct *p, int cpu)
rq_pin_lock(src_rq, &srf);
rq_pin_lock(dst_rq, &drf);
- deactivate_task(src_rq, p, 0);
- set_task_cpu(p, cpu);
- activate_task(dst_rq, p, 0);
+ move_queued_task_locked(src_rq, dst_rq, p);
wakeup_preempt(dst_rq, p, 0);
rq_unpin_lock(dst_rq, &drf);
@@ -4424,7 +4464,8 @@ int wake_up_state(struct task_struct *p, unsigned int state)
* Perform scheduler related setup for a newly forked process p.
* p is forked by current.
*
- * __sched_fork() is basic setup used by init_idle() too:
+ * __sched_fork() is basic setup which is also used by sched_init() to
+ * initialize the boot CPU's idle task.
*/
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
{
@@ -5517,7 +5558,7 @@ unsigned long long task_sched_runtime(struct task_struct *p)
* project cycles that may never be accounted to this
* thread, breaking clock_gettime().
*/
- if (task_current(rq, p) && task_on_rq_queued(p)) {
+ if (task_current_donor(rq, p) && task_on_rq_queued(p)) {
prefetch_curr_exec_start(p);
update_rq_clock(rq);
p->sched_class->update_curr(rq);
@@ -5585,7 +5626,8 @@ void sched_tick(void)
{
int cpu = smp_processor_id();
struct rq *rq = cpu_rq(cpu);
- struct task_struct *curr;
+ /* accounting goes to the donor task */
+ struct task_struct *donor;
struct rq_flags rf;
unsigned long hw_pressure;
u64 resched_latency;
@@ -5596,19 +5638,23 @@ void sched_tick(void)
sched_clock_tick();
rq_lock(rq, &rf);
+ donor = rq->donor;
- curr = rq->curr;
- psi_account_irqtime(rq, curr, NULL);
+ psi_account_irqtime(rq, donor, NULL);
update_rq_clock(rq);
hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
- curr->sched_class->task_tick(rq, curr, 0);
+
+ if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY))
+ resched_curr(rq);
+
+ donor->sched_class->task_tick(rq, donor, 0);
if (sched_feat(LATENCY_WARN))
resched_latency = cpu_resched_latency(rq);
calc_global_load_tick(rq);
sched_core_tick(rq);
- task_tick_mm_cid(rq, curr);
+ task_tick_mm_cid(rq, donor);
scx_tick(rq);
rq_unlock(rq, &rf);
@@ -5618,8 +5664,8 @@ void sched_tick(void)
perf_event_task_tick();
- if (curr->flags & PF_WQ_WORKER)
- wq_worker_tick(curr);
+ if (donor->flags & PF_WQ_WORKER)
+ wq_worker_tick(donor);
#ifdef CONFIG_SMP
if (!scx_switched_all()) {
@@ -5686,6 +5732,12 @@ static void sched_tick_remote(struct work_struct *work)
struct task_struct *curr = rq->curr;
if (cpu_online(cpu)) {
+ /*
+ * Since this is a remote tick for full dynticks mode,
+ * we are always sure that there is no proxy (only a
+ * single task is running).
+ */
+ SCHED_WARN_ON(rq->curr != rq->donor);
update_rq_clock(rq);
if (!is_idle_task(curr)) {
@@ -6309,10 +6361,7 @@ static bool try_steal_cookie(int this, int that)
if (sched_task_is_throttled(p, this))
goto next;
- deactivate_task(src, p, 0);
- set_task_cpu(p, this);
- activate_task(dst, p, 0);
-
+ move_queued_task_locked(src, dst, p);
resched_curr(dst);
success = true;
@@ -6507,6 +6556,45 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
#define SM_RTLOCK_WAIT 2
/*
+ * Helper function for __schedule()
+ *
+ * If a task does not have signals pending, deactivate it
+ * Otherwise marks the task's __state as RUNNING
+ */
+static bool try_to_block_task(struct rq *rq, struct task_struct *p,
+ unsigned long task_state)
+{
+ int flags = DEQUEUE_NOCLOCK;
+
+ if (signal_pending_state(task_state, p)) {
+ WRITE_ONCE(p->__state, TASK_RUNNING);
+ return false;
+ }
+
+ p->sched_contributes_to_load =
+ (task_state & TASK_UNINTERRUPTIBLE) &&
+ !(task_state & TASK_NOLOAD) &&
+ !(task_state & TASK_FROZEN);
+
+ if (unlikely(is_special_task_state(task_state)))
+ flags |= DEQUEUE_SPECIAL;
+
+ /*
+ * __schedule() ttwu()
+ * prev_state = prev->state; if (p->on_rq && ...)
+ * if (prev_state) goto out;
+ * p->on_rq = 0; smp_acquire__after_ctrl_dep();
+ * p->state = TASK_WAKING
+ *
+ * Where __schedule() and ttwu() have matching control dependencies.
+ *
+ * After this, schedule() must not care about p->state any more.
+ */
+ block_task(rq, p, flags);
+ return true;
+}
+
+/*
* __schedule() is the main scheduler function.
*
* The main means of driving the scheduler and thus entering this function are:
@@ -6614,37 +6702,12 @@ static void __sched notrace __schedule(int sched_mode)
goto picked;
}
} else if (!preempt && prev_state) {
- if (signal_pending_state(prev_state, prev)) {
- WRITE_ONCE(prev->__state, TASK_RUNNING);
- } else {
- int flags = DEQUEUE_NOCLOCK;
-
- prev->sched_contributes_to_load =
- (prev_state & TASK_UNINTERRUPTIBLE) &&
- !(prev_state & TASK_NOLOAD) &&
- !(prev_state & TASK_FROZEN);
-
- if (unlikely(is_special_task_state(prev_state)))
- flags |= DEQUEUE_SPECIAL;
-
- /*
- * __schedule() ttwu()
- * prev_state = prev->state; if (p->on_rq && ...)
- * if (prev_state) goto out;
- * p->on_rq = 0; smp_acquire__after_ctrl_dep();
- * p->state = TASK_WAKING
- *
- * Where __schedule() and ttwu() have matching control dependencies.
- *
- * After this, schedule() must not care about p->state any more.
- */
- block_task(rq, prev, flags);
- block = true;
- }
+ block = try_to_block_task(rq, prev, prev_state);
switch_count = &prev->nvcsw;
}
next = pick_next_task(rq, prev, &rf);
+ rq_set_donor(rq, next);
picked:
clear_tsk_need_resched(prev);
clear_preempt_need_resched();
@@ -7151,7 +7214,7 @@ void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
queued = task_on_rq_queued(p);
- running = task_current(rq, p);
+ running = task_current_donor(rq, p);
if (queued)
dequeue_task(rq, p, queue_flag);
if (running)
@@ -7351,6 +7414,7 @@ EXPORT_SYMBOL(__cond_resched_rwlock_write);
* preempt_schedule <- NOP
* preempt_schedule_notrace <- NOP
* irqentry_exit_cond_resched <- NOP
+ * dynamic_preempt_lazy <- false
*
* VOLUNTARY:
* cond_resched <- __cond_resched
@@ -7358,6 +7422,7 @@ EXPORT_SYMBOL(__cond_resched_rwlock_write);
* preempt_schedule <- NOP
* preempt_schedule_notrace <- NOP
* irqentry_exit_cond_resched <- NOP
+ * dynamic_preempt_lazy <- false
*
* FULL:
* cond_resched <- RET0
@@ -7365,6 +7430,15 @@ EXPORT_SYMBOL(__cond_resched_rwlock_write);
* preempt_schedule <- preempt_schedule
* preempt_schedule_notrace <- preempt_schedule_notrace
* irqentry_exit_cond_resched <- irqentry_exit_cond_resched
+ * dynamic_preempt_lazy <- false
+ *
+ * LAZY:
+ * cond_resched <- RET0
+ * might_resched <- RET0
+ * preempt_schedule <- preempt_schedule
+ * preempt_schedule_notrace <- preempt_schedule_notrace
+ * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
+ * dynamic_preempt_lazy <- true
*/
enum {
@@ -7372,30 +7446,41 @@ enum {
preempt_dynamic_none,
preempt_dynamic_voluntary,
preempt_dynamic_full,
+ preempt_dynamic_lazy,
};
int preempt_dynamic_mode = preempt_dynamic_undefined;
int sched_dynamic_mode(const char *str)
{
+#ifndef CONFIG_PREEMPT_RT
if (!strcmp(str, "none"))
return preempt_dynamic_none;
if (!strcmp(str, "voluntary"))
return preempt_dynamic_voluntary;
+#endif
if (!strcmp(str, "full"))
return preempt_dynamic_full;
+#ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
+ if (!strcmp(str, "lazy"))
+ return preempt_dynamic_lazy;
+#endif
+
return -EINVAL;
}
+#define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key)
+#define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key)
+
#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
#define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
#define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
-#define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key)
-#define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key)
+#define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f)
+#define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f)
#else
#error "Unsupported PREEMPT_DYNAMIC mechanism"
#endif
@@ -7415,6 +7500,7 @@ static void __sched_dynamic_update(int mode)
preempt_dynamic_enable(preempt_schedule);
preempt_dynamic_enable(preempt_schedule_notrace);
preempt_dynamic_enable(irqentry_exit_cond_resched);
+ preempt_dynamic_key_disable(preempt_lazy);
switch (mode) {
case preempt_dynamic_none:
@@ -7424,6 +7510,7 @@ static void __sched_dynamic_update(int mode)
preempt_dynamic_disable(preempt_schedule);
preempt_dynamic_disable(preempt_schedule_notrace);
preempt_dynamic_disable(irqentry_exit_cond_resched);
+ preempt_dynamic_key_disable(preempt_lazy);
if (mode != preempt_dynamic_mode)
pr_info("Dynamic Preempt: none\n");
break;
@@ -7435,6 +7522,7 @@ static void __sched_dynamic_update(int mode)
preempt_dynamic_disable(preempt_schedule);
preempt_dynamic_disable(preempt_schedule_notrace);
preempt_dynamic_disable(irqentry_exit_cond_resched);
+ preempt_dynamic_key_disable(preempt_lazy);
if (mode != preempt_dynamic_mode)
pr_info("Dynamic Preempt: voluntary\n");
break;
@@ -7446,9 +7534,22 @@ static void __sched_dynamic_update(int mode)
preempt_dynamic_enable(preempt_schedule);
preempt_dynamic_enable(preempt_schedule_notrace);
preempt_dynamic_enable(irqentry_exit_cond_resched);
+ preempt_dynamic_key_disable(preempt_lazy);
if (mode != preempt_dynamic_mode)
pr_info("Dynamic Preempt: full\n");
break;
+
+ case preempt_dynamic_lazy:
+ if (!klp_override)
+ preempt_dynamic_disable(cond_resched);
+ preempt_dynamic_disable(might_resched);
+ preempt_dynamic_enable(preempt_schedule);
+ preempt_dynamic_enable(preempt_schedule_notrace);
+ preempt_dynamic_enable(irqentry_exit_cond_resched);
+ preempt_dynamic_key_enable(preempt_lazy);
+ if (mode != preempt_dynamic_mode)
+ pr_info("Dynamic Preempt: lazy\n");
+ break;
}
preempt_dynamic_mode = mode;
@@ -7511,6 +7612,8 @@ static void __init preempt_dynamic_init(void)
sched_dynamic_update(preempt_dynamic_none);
} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
sched_dynamic_update(preempt_dynamic_voluntary);
+ } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
+ sched_dynamic_update(preempt_dynamic_lazy);
} else {
/* Default static call setting, nothing to do */
WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
@@ -7531,6 +7634,7 @@ static void __init preempt_dynamic_init(void)
PREEMPT_MODEL_ACCESSOR(none);
PREEMPT_MODEL_ACCESSOR(voluntary);
PREEMPT_MODEL_ACCESSOR(full);
+PREEMPT_MODEL_ACCESSOR(lazy);
#else /* !CONFIG_PREEMPT_DYNAMIC: */
@@ -7683,8 +7787,6 @@ void __init init_idle(struct task_struct *idle, int cpu)
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
- __sched_fork(0, idle);
-
raw_spin_lock_irqsave(&idle->pi_lock, flags);
raw_spin_rq_lock(rq);
@@ -7699,10 +7801,8 @@ void __init init_idle(struct task_struct *idle, int cpu)
#ifdef CONFIG_SMP
/*
- * It's possible that init_idle() gets called multiple times on a task,
- * in that case do_set_cpus_allowed() will not do the right thing.
- *
- * And since this is boot we can forgo the serialization.
+ * No validation and serialization required at boot time and for
+ * setting up the idle tasks of not yet online CPUs.
*/
set_cpus_allowed_common(idle, &ac);
#endif
@@ -7721,6 +7821,7 @@ void __init init_idle(struct task_struct *idle, int cpu)
rcu_read_unlock();
rq->idle = idle;
+ rq_set_donor(rq, idle);
rcu_assign_pointer(rq->curr, idle);
idle->on_rq = TASK_ON_RQ_QUEUED;
#ifdef CONFIG_SMP
@@ -7810,7 +7911,7 @@ void sched_setnuma(struct task_struct *p, int nid)
rq = task_rq_lock(p, &rf);
queued = task_on_rq_queued(p);
- running = task_current(rq, p);
+ running = task_current_donor(rq, p);
if (queued)
dequeue_task(rq, p, DEQUEUE_SAVE);
@@ -8546,6 +8647,7 @@ void __init sched_init(void)
* but because we are the idle thread, we just pick up running again
* when this runqueue becomes "idle".
*/
+ __sched_fork(0, current);
init_idle(current, smp_processor_id());
calc_load_update = jiffies + LOAD_FREQ;
@@ -8960,7 +9062,7 @@ void sched_move_task(struct task_struct *tsk)
update_rq_clock(rq);
- running = task_current(rq, tsk);
+ running = task_current_donor(rq, tsk);
queued = task_on_rq_queued(tsk);
if (queued)
@@ -10253,6 +10355,7 @@ int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
*/
if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
return -1;
+ WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET);
return src_cid;
}
@@ -10265,7 +10368,8 @@ void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
{
struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
struct mm_struct *mm = t->mm;
- int src_cid, dst_cid, src_cpu;
+ int src_cid, src_cpu;
+ bool dst_cid_is_set;
struct rq *src_rq;
lockdep_assert_rq_held(dst_rq);
@@ -10282,9 +10386,9 @@ void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
* allocation closest to 0 in cases where few threads migrate around
* many CPUs.
*
- * If destination cid is already set, we may have to just clear
- * the src cid to ensure compactness in frequent migrations
- * scenarios.
+ * If destination cid or recent cid is already set, we may have
+ * to just clear the src cid to ensure compactness in frequent
+ * migrations scenarios.
*
* It is not useful to clear the src cid when the number of threads is
* greater or equal to the number of allowed CPUs, because user-space
@@ -10292,9 +10396,9 @@ void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
* allowed CPUs.
*/
dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
- dst_cid = READ_ONCE(dst_pcpu_cid->cid);
- if (!mm_cid_is_unset(dst_cid) &&
- atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
+ dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) ||
+ !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid));
+ if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed))
return;
src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
src_rq = cpu_rq(src_cpu);
@@ -10305,13 +10409,14 @@ void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
src_cid);
if (src_cid == -1)
return;
- if (!mm_cid_is_unset(dst_cid)) {
+ if (dst_cid_is_set) {
__mm_cid_put(mm, src_cid);
return;
}
/* Move src_cid to dst cpu. */
mm_cid_snapshot_time(dst_rq, mm);
WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
+ WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid);
}
static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
@@ -10550,7 +10655,7 @@ void sched_mm_cid_after_execve(struct task_struct *t)
* Matches barrier in sched_mm_cid_remote_clear_old().
*/
smp_mb();
- t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
+ t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm);
}
rseq_set_notify_resume(t);
}
diff --git a/kernel/sched/cpufreq_schedutil.c b/kernel/sched/cpufreq_schedutil.c
index c6ba15388ea7..28c77904ea74 100644
--- a/kernel/sched/cpufreq_schedutil.c
+++ b/kernel/sched/cpufreq_schedutil.c
@@ -783,9 +783,8 @@ static int sugov_init(struct cpufreq_policy *policy)
if (ret)
goto fail;
- sugov_eas_rebuild_sd();
-
out:
+ sugov_eas_rebuild_sd();
mutex_unlock(&global_tunables_lock);
return 0;
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
index be1b917dc8ce..d9d5a702f1a6 100644
--- a/kernel/sched/deadline.c
+++ b/kernel/sched/deadline.c
@@ -1339,7 +1339,7 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
#endif
enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
- if (dl_task(rq->curr))
+ if (dl_task(rq->donor))
wakeup_preempt_dl(rq, p, 0);
else
resched_curr(rq);
@@ -1736,11 +1736,11 @@ int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 perio
*/
static void update_curr_dl(struct rq *rq)
{
- struct task_struct *curr = rq->curr;
- struct sched_dl_entity *dl_se = &curr->dl;
+ struct task_struct *donor = rq->donor;
+ struct sched_dl_entity *dl_se = &donor->dl;
s64 delta_exec;
- if (!dl_task(curr) || !on_dl_rq(dl_se))
+ if (!dl_task(donor) || !on_dl_rq(dl_se))
return;
/*
@@ -2213,7 +2213,7 @@ static int find_later_rq(struct task_struct *task);
static int
select_task_rq_dl(struct task_struct *p, int cpu, int flags)
{
- struct task_struct *curr;
+ struct task_struct *curr, *donor;
bool select_rq;
struct rq *rq;
@@ -2224,6 +2224,7 @@ select_task_rq_dl(struct task_struct *p, int cpu, int flags)
rcu_read_lock();
curr = READ_ONCE(rq->curr); /* unlocked access */
+ donor = READ_ONCE(rq->donor);
/*
* If we are dealing with a -deadline task, we must
@@ -2234,9 +2235,9 @@ select_task_rq_dl(struct task_struct *p, int cpu, int flags)
* other hand, if it has a shorter deadline, we
* try to make it stay here, it might be important.
*/
- select_rq = unlikely(dl_task(curr)) &&
+ select_rq = unlikely(dl_task(donor)) &&
(curr->nr_cpus_allowed < 2 ||
- !dl_entity_preempt(&p->dl, &curr->dl)) &&
+ !dl_entity_preempt(&p->dl, &donor->dl)) &&
p->nr_cpus_allowed > 1;
/*
@@ -2299,7 +2300,7 @@ static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
* let's hope p can move out.
*/
if (rq->curr->nr_cpus_allowed == 1 ||
- !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
+ !cpudl_find(&rq->rd->cpudl, rq->donor, NULL))
return;
/*
@@ -2338,7 +2339,7 @@ static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
int flags)
{
- if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
+ if (dl_entity_preempt(&p->dl, &rq->donor->dl)) {
resched_curr(rq);
return;
}
@@ -2348,7 +2349,7 @@ static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
* In the unlikely case current and p have the same deadline
* let us try to decide what's the best thing to do...
*/
- if ((p->dl.deadline == rq->curr->dl.deadline) &&
+ if ((p->dl.deadline == rq->donor->dl.deadline) &&
!test_tsk_need_resched(rq->curr))
check_preempt_equal_dl(rq, p);
#endif /* CONFIG_SMP */
@@ -2380,7 +2381,7 @@ static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
if (!first)
return;
- if (rq->curr->sched_class != &dl_sched_class)
+ if (rq->donor->sched_class != &dl_sched_class)
update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
deadline_queue_push_tasks(rq);
@@ -2487,14 +2488,6 @@ static void task_fork_dl(struct task_struct *p)
/* Only try algorithms three times */
#define DL_MAX_TRIES 3
-static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
-{
- if (!task_on_cpu(rq, p) &&
- cpumask_test_cpu(cpu, &p->cpus_mask))
- return 1;
- return 0;
-}
-
/*
* Return the earliest pushable rq's task, which is suitable to be executed
* on the CPU, NULL otherwise:
@@ -2513,7 +2506,7 @@ next_node:
if (next_node) {
p = __node_2_pdl(next_node);
- if (pick_dl_task(rq, p, cpu))
+ if (task_is_pushable(rq, p, cpu))
return p;
next_node = rb_next(next_node);
@@ -2707,8 +2700,8 @@ retry:
* can move away, it makes sense to just reschedule
* without going further in pushing next_task.
*/
- if (dl_task(rq->curr) &&
- dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
+ if (dl_task(rq->donor) &&
+ dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) &&
rq->curr->nr_cpus_allowed > 1) {
resched_curr(rq);
return 0;
@@ -2751,9 +2744,7 @@ retry:
goto retry;
}
- deactivate_task(rq, next_task, 0);
- set_task_cpu(next_task, later_rq->cpu);
- activate_task(later_rq, next_task, 0);
+ move_queued_task_locked(rq, later_rq, next_task);
ret = 1;
resched_curr(later_rq);
@@ -2833,15 +2824,13 @@ static void pull_dl_task(struct rq *this_rq)
* deadline than the current task of its runqueue.
*/
if (dl_time_before(p->dl.deadline,
- src_rq->curr->dl.deadline))
+ src_rq->donor->dl.deadline))
goto skip;
if (is_migration_disabled(p)) {
push_task = get_push_task(src_rq);
} else {
- deactivate_task(src_rq, p, 0);
- set_task_cpu(p, this_cpu);
- activate_task(this_rq, p, 0);
+ move_queued_task_locked(src_rq, this_rq, p);
dmin = p->dl.deadline;
resched = true;
}
@@ -2874,9 +2863,9 @@ static void task_woken_dl(struct rq *rq, struct task_struct *p)
if (!task_on_cpu(rq, p) &&
!test_tsk_need_resched(rq->curr) &&
p->nr_cpus_allowed > 1 &&
- dl_task(rq->curr) &&
+ dl_task(rq->donor) &&
(rq->curr->nr_cpus_allowed < 2 ||
- !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
+ !dl_entity_preempt(&p->dl, &rq->donor->dl))) {
push_dl_tasks(rq);
}
}
@@ -3051,12 +3040,12 @@ static void switched_to_dl(struct rq *rq, struct task_struct *p)
return;
}
- if (rq->curr != p) {
+ if (rq->donor != p) {
#ifdef CONFIG_SMP
if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
deadline_queue_push_tasks(rq);
#endif
- if (dl_task(rq->curr))
+ if (dl_task(rq->donor))
wakeup_preempt_dl(rq, p, 0);
else
resched_curr(rq);
@@ -3085,7 +3074,7 @@ static void prio_changed_dl(struct rq *rq, struct task_struct *p,
if (!rq->dl.overloaded)
deadline_queue_pull_task(rq);
- if (task_current(rq, p)) {
+ if (task_current_donor(rq, p)) {
/*
* If we now have a earlier deadline task than p,
* then reschedule, provided p is still on this
diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c
index f4035c7a0fa1..a48b2a701ec2 100644
--- a/kernel/sched/debug.c
+++ b/kernel/sched/debug.c
@@ -245,11 +245,12 @@ static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
static int sched_dynamic_show(struct seq_file *m, void *v)
{
static const char * preempt_modes[] = {
- "none", "voluntary", "full"
+ "none", "voluntary", "full", "lazy",
};
- int i;
+ int j = ARRAY_SIZE(preempt_modes) - !IS_ENABLED(CONFIG_ARCH_HAS_PREEMPT_LAZY);
+ int i = IS_ENABLED(CONFIG_PREEMPT_RT) * 2;
- for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
+ for (; i < j; i++) {
if (preempt_dynamic_mode == i)
seq_puts(m, "(");
seq_puts(m, preempt_modes[i]);
diff --git a/kernel/sched/ext.c b/kernel/sched/ext.c
index 751d73d500e5..7fff1d045477 100644
--- a/kernel/sched/ext.c
+++ b/kernel/sched/ext.c
@@ -199,8 +199,10 @@ struct scx_dump_ctx {
/**
* struct sched_ext_ops - Operation table for BPF scheduler implementation
*
- * Userland can implement an arbitrary scheduling policy by implementing and
- * loading operations in this table.
+ * A BPF scheduler can implement an arbitrary scheduling policy by
+ * implementing and loading operations in this table. Note that a userland
+ * scheduling policy can also be implemented using the BPF scheduler
+ * as a shim layer.
*/
struct sched_ext_ops {
/**
@@ -218,10 +220,15 @@ struct sched_ext_ops {
* dispatch. While an explicit custom mechanism can be added,
* select_cpu() serves as the default way to wake up idle CPUs.
*
- * @p may be dispatched directly by calling scx_bpf_dispatch(). If @p
- * is dispatched, the ops.enqueue() callback will be skipped. Finally,
- * if @p is dispatched to SCX_DSQ_LOCAL, it will be dispatched to the
- * local DSQ of whatever CPU is returned by this callback.
+ * @p may be inserted into a DSQ directly by calling
+ * scx_bpf_dsq_insert(). If so, the ops.enqueue() will be skipped.
+ * Directly inserting into %SCX_DSQ_LOCAL will put @p in the local DSQ
+ * of the CPU returned by this operation.
+ *
+ * Note that select_cpu() is never called for tasks that can only run
+ * on a single CPU or tasks with migration disabled, as they don't have
+ * the option to select a different CPU. See select_task_rq() for
+ * details.
*/
s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags);
@@ -230,12 +237,12 @@ struct sched_ext_ops {
* @p: task being enqueued
* @enq_flags: %SCX_ENQ_*
*
- * @p is ready to run. Dispatch directly by calling scx_bpf_dispatch()
- * or enqueue on the BPF scheduler. If not directly dispatched, the bpf
- * scheduler owns @p and if it fails to dispatch @p, the task will
- * stall.
+ * @p is ready to run. Insert directly into a DSQ by calling
+ * scx_bpf_dsq_insert() or enqueue on the BPF scheduler. If not directly
+ * inserted, the bpf scheduler owns @p and if it fails to dispatch @p,
+ * the task will stall.
*
- * If @p was dispatched from ops.select_cpu(), this callback is
+ * If @p was inserted into a DSQ from ops.select_cpu(), this callback is
* skipped.
*/
void (*enqueue)(struct task_struct *p, u64 enq_flags);
@@ -257,17 +264,17 @@ struct sched_ext_ops {
void (*dequeue)(struct task_struct *p, u64 deq_flags);
/**
- * dispatch - Dispatch tasks from the BPF scheduler and/or consume DSQs
+ * dispatch - Dispatch tasks from the BPF scheduler and/or user DSQs
* @cpu: CPU to dispatch tasks for
* @prev: previous task being switched out
*
* Called when a CPU's local dsq is empty. The operation should dispatch
* one or more tasks from the BPF scheduler into the DSQs using
- * scx_bpf_dispatch() and/or consume user DSQs into the local DSQ using
- * scx_bpf_consume().
+ * scx_bpf_dsq_insert() and/or move from user DSQs into the local DSQ
+ * using scx_bpf_dsq_move_to_local().
*
- * The maximum number of times scx_bpf_dispatch() can be called without
- * an intervening scx_bpf_consume() is specified by
+ * The maximum number of times scx_bpf_dsq_insert() can be called
+ * without an intervening scx_bpf_dsq_move_to_local() is specified by
* ops.dispatch_max_batch. See the comments on top of the two functions
* for more details.
*
@@ -275,7 +282,7 @@ struct sched_ext_ops {
* @prev is still runnable as indicated by set %SCX_TASK_QUEUED in
* @prev->scx.flags, it is not enqueued yet and will be enqueued after
* ops.dispatch() returns. To keep executing @prev, return without
- * dispatching or consuming any tasks. Also see %SCX_OPS_ENQ_LAST.
+ * dispatching or moving any tasks. Also see %SCX_OPS_ENQ_LAST.
*/
void (*dispatch)(s32 cpu, struct task_struct *prev);
@@ -594,7 +601,7 @@ struct sched_ext_ops {
* Update @tg's weight to @weight.
*/
void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight);
-#endif /* CONFIG_CGROUPS */
+#endif /* CONFIG_EXT_GROUP_SCHED */
/*
* All online ops must come before ops.cpu_online().
@@ -707,7 +714,7 @@ enum scx_enq_flags {
/*
* Set the following to trigger preemption when calling
- * scx_bpf_dispatch() with a local dsq as the target. The slice of the
+ * scx_bpf_dsq_insert() with a local dsq as the target. The slice of the
* current task is cleared to zero and the CPU is kicked into the
* scheduling path. Implies %SCX_ENQ_HEAD.
*/
@@ -862,8 +869,9 @@ static DEFINE_MUTEX(scx_ops_enable_mutex);
DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled);
DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED);
+static unsigned long scx_in_softlockup;
+static atomic_t scx_ops_breather_depth = ATOMIC_INIT(0);
static int scx_ops_bypass_depth;
-static DEFINE_RAW_SPINLOCK(__scx_ops_bypass_lock);
static bool scx_ops_init_task_enabled;
static bool scx_switching_all;
DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
@@ -876,6 +884,11 @@ static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting);
static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt);
static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
+#ifdef CONFIG_SMP
+static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc);
+static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa);
+#endif
+
static struct static_key_false scx_has_op[SCX_OPI_END] =
{ [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT };
@@ -2309,7 +2322,7 @@ static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq,
/*
* We don't require the BPF scheduler to avoid dispatching to offline
* CPUs mostly for convenience but also because CPUs can go offline
- * between scx_bpf_dispatch() calls and here. Trigger error iff the
+ * between scx_bpf_dsq_insert() calls and here. Trigger error iff the
* picked CPU is outside the allowed mask.
*/
if (!task_allowed_on_cpu(p, cpu)) {
@@ -2397,11 +2410,115 @@ static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *r
static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; }
#endif /* CONFIG_SMP */
+/**
+ * move_task_between_dsqs() - Move a task from one DSQ to another
+ * @p: target task
+ * @enq_flags: %SCX_ENQ_*
+ * @src_dsq: DSQ @p is currently on, must not be a local DSQ
+ * @dst_dsq: DSQ @p is being moved to, can be any DSQ
+ *
+ * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local
+ * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq
+ * will change. As @p's task_rq is locked, this function doesn't need to use the
+ * holding_cpu mechanism.
+ *
+ * On return, @src_dsq is unlocked and only @p's new task_rq, which is the
+ * return value, is locked.
+ */
+static struct rq *move_task_between_dsqs(struct task_struct *p, u64 enq_flags,
+ struct scx_dispatch_q *src_dsq,
+ struct scx_dispatch_q *dst_dsq)
+{
+ struct rq *src_rq = task_rq(p), *dst_rq;
+
+ BUG_ON(src_dsq->id == SCX_DSQ_LOCAL);
+ lockdep_assert_held(&src_dsq->lock);
+ lockdep_assert_rq_held(src_rq);
+
+ if (dst_dsq->id == SCX_DSQ_LOCAL) {
+ dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
+ if (!task_can_run_on_remote_rq(p, dst_rq, true)) {
+ dst_dsq = find_global_dsq(p);
+ dst_rq = src_rq;
+ }
+ } else {
+ /* no need to migrate if destination is a non-local DSQ */
+ dst_rq = src_rq;
+ }
+
+ /*
+ * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different
+ * CPU, @p will be migrated.
+ */
+ if (dst_dsq->id == SCX_DSQ_LOCAL) {
+ /* @p is going from a non-local DSQ to a local DSQ */
+ if (src_rq == dst_rq) {
+ task_unlink_from_dsq(p, src_dsq);
+ move_local_task_to_local_dsq(p, enq_flags,
+ src_dsq, dst_rq);
+ raw_spin_unlock(&src_dsq->lock);
+ } else {
+ raw_spin_unlock(&src_dsq->lock);
+ move_remote_task_to_local_dsq(p, enq_flags,
+ src_rq, dst_rq);
+ }
+ } else {
+ /*
+ * @p is going from a non-local DSQ to a non-local DSQ. As
+ * $src_dsq is already locked, do an abbreviated dequeue.
+ */
+ task_unlink_from_dsq(p, src_dsq);
+ p->scx.dsq = NULL;
+ raw_spin_unlock(&src_dsq->lock);
+
+ dispatch_enqueue(dst_dsq, p, enq_flags);
+ }
+
+ return dst_rq;
+}
+
+/*
+ * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly
+ * banging on the same DSQ on a large NUMA system to the point where switching
+ * to the bypass mode can take a long time. Inject artifical delays while the
+ * bypass mode is switching to guarantee timely completion.
+ */
+static void scx_ops_breather(struct rq *rq)
+{
+ u64 until;
+
+ lockdep_assert_rq_held(rq);
+
+ if (likely(!atomic_read(&scx_ops_breather_depth)))
+ return;
+
+ raw_spin_rq_unlock(rq);
+
+ until = ktime_get_ns() + NSEC_PER_MSEC;
+
+ do {
+ int cnt = 1024;
+ while (atomic_read(&scx_ops_breather_depth) && --cnt)
+ cpu_relax();
+ } while (atomic_read(&scx_ops_breather_depth) &&
+ time_before64(ktime_get_ns(), until));
+
+ raw_spin_rq_lock(rq);
+}
+
static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq)
{
struct task_struct *p;
retry:
/*
+ * This retry loop can repeatedly race against scx_ops_bypass()
+ * dequeueing tasks from @dsq trying to put the system into the bypass
+ * mode. On some multi-socket machines (e.g. 2x Intel 8480c), this can
+ * live-lock the machine into soft lockups. Give a breather.
+ */
+ scx_ops_breather(rq);
+
+ /*
* The caller can't expect to successfully consume a task if the task's
* addition to @dsq isn't guaranteed to be visible somehow. Test
* @dsq->list without locking and skip if it seems empty.
@@ -2541,7 +2658,7 @@ static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq,
* Dispatching to local DSQs may need to wait for queueing to complete or
* require rq lock dancing. As we don't wanna do either while inside
* ops.dispatch() to avoid locking order inversion, we split dispatching into
- * two parts. scx_bpf_dispatch() which is called by ops.dispatch() records the
+ * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the
* task and its qseq. Once ops.dispatch() returns, this function is called to
* finish up.
*
@@ -2573,7 +2690,7 @@ retry:
/*
* If qseq doesn't match, @p has gone through at least one
* dispatch/dequeue and re-enqueue cycle between
- * scx_bpf_dispatch() and here and we have no claim on it.
+ * scx_bpf_dsq_insert() and here and we have no claim on it.
*/
if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch)
return;
@@ -2642,7 +2759,7 @@ static int balance_one(struct rq *rq, struct task_struct *prev)
* If the previous sched_class for the current CPU was not SCX,
* notify the BPF scheduler that it again has control of the
* core. This callback complements ->cpu_release(), which is
- * emitted in scx_next_task_picked().
+ * emitted in switch_class().
*/
if (SCX_HAS_OP(cpu_acquire))
SCX_CALL_OP(SCX_KF_REST, cpu_acquire, cpu_of(rq), NULL);
@@ -3098,28 +3215,216 @@ found:
goto retry;
}
+/*
+ * Return true if the LLC domains do not perfectly overlap with the NUMA
+ * domains, false otherwise.
+ */
+static bool llc_numa_mismatch(void)
+{
+ int cpu;
+
+ /*
+ * We need to scan all online CPUs to verify whether their scheduling
+ * domains overlap.
+ *
+ * While it is rare to encounter architectures with asymmetric NUMA
+ * topologies, CPU hotplugging or virtualized environments can result
+ * in asymmetric configurations.
+ *
+ * For example:
+ *
+ * NUMA 0:
+ * - LLC 0: cpu0..cpu7
+ * - LLC 1: cpu8..cpu15 [offline]
+ *
+ * NUMA 1:
+ * - LLC 0: cpu16..cpu23
+ * - LLC 1: cpu24..cpu31
+ *
+ * In this case, if we only check the first online CPU (cpu0), we might
+ * incorrectly assume that the LLC and NUMA domains are fully
+ * overlapping, which is incorrect (as NUMA 1 has two distinct LLC
+ * domains).
+ */
+ for_each_online_cpu(cpu) {
+ const struct cpumask *numa_cpus;
+ struct sched_domain *sd;
+
+ sd = rcu_dereference(per_cpu(sd_llc, cpu));
+ if (!sd)
+ return true;
+
+ numa_cpus = cpumask_of_node(cpu_to_node(cpu));
+ if (sd->span_weight != cpumask_weight(numa_cpus))
+ return true;
+ }
+
+ return false;
+}
+
+/*
+ * Initialize topology-aware scheduling.
+ *
+ * Detect if the system has multiple LLC or multiple NUMA domains and enable
+ * cache-aware / NUMA-aware scheduling optimizations in the default CPU idle
+ * selection policy.
+ *
+ * Assumption: the kernel's internal topology representation assumes that each
+ * CPU belongs to a single LLC domain, and that each LLC domain is entirely
+ * contained within a single NUMA node.
+ */
+static void update_selcpu_topology(void)
+{
+ bool enable_llc = false, enable_numa = false;
+ struct sched_domain *sd;
+ const struct cpumask *cpus;
+ s32 cpu = cpumask_first(cpu_online_mask);
+
+ /*
+ * Enable LLC domain optimization only when there are multiple LLC
+ * domains among the online CPUs. If all online CPUs are part of a
+ * single LLC domain, the idle CPU selection logic can choose any
+ * online CPU without bias.
+ *
+ * Note that it is sufficient to check the LLC domain of the first
+ * online CPU to determine whether a single LLC domain includes all
+ * CPUs.
+ */
+ rcu_read_lock();
+ sd = rcu_dereference(per_cpu(sd_llc, cpu));
+ if (sd) {
+ if (sd->span_weight < num_online_cpus())
+ enable_llc = true;
+ }
+
+ /*
+ * Enable NUMA optimization only when there are multiple NUMA domains
+ * among the online CPUs and the NUMA domains don't perfectly overlaps
+ * with the LLC domains.
+ *
+ * If all CPUs belong to the same NUMA node and the same LLC domain,
+ * enabling both NUMA and LLC optimizations is unnecessary, as checking
+ * for an idle CPU in the same domain twice is redundant.
+ */
+ cpus = cpumask_of_node(cpu_to_node(cpu));
+ if ((cpumask_weight(cpus) < num_online_cpus()) && llc_numa_mismatch())
+ enable_numa = true;
+ rcu_read_unlock();
+
+ pr_debug("sched_ext: LLC idle selection %s\n",
+ enable_llc ? "enabled" : "disabled");
+ pr_debug("sched_ext: NUMA idle selection %s\n",
+ enable_numa ? "enabled" : "disabled");
+
+ if (enable_llc)
+ static_branch_enable_cpuslocked(&scx_selcpu_topo_llc);
+ else
+ static_branch_disable_cpuslocked(&scx_selcpu_topo_llc);
+ if (enable_numa)
+ static_branch_enable_cpuslocked(&scx_selcpu_topo_numa);
+ else
+ static_branch_disable_cpuslocked(&scx_selcpu_topo_numa);
+}
+
+/*
+ * Built-in CPU idle selection policy:
+ *
+ * 1. Prioritize full-idle cores:
+ * - always prioritize CPUs from fully idle cores (both logical CPUs are
+ * idle) to avoid interference caused by SMT.
+ *
+ * 2. Reuse the same CPU:
+ * - prefer the last used CPU to take advantage of cached data (L1, L2) and
+ * branch prediction optimizations.
+ *
+ * 3. Pick a CPU within the same LLC (Last-Level Cache):
+ * - if the above conditions aren't met, pick a CPU that shares the same LLC
+ * to maintain cache locality.
+ *
+ * 4. Pick a CPU within the same NUMA node, if enabled:
+ * - choose a CPU from the same NUMA node to reduce memory access latency.
+ *
+ * Step 3 and 4 are performed only if the system has, respectively, multiple
+ * LLC domains / multiple NUMA nodes (see scx_selcpu_topo_llc and
+ * scx_selcpu_topo_numa).
+ *
+ * NOTE: tasks that can only run on 1 CPU are excluded by this logic, because
+ * we never call ops.select_cpu() for them, see select_task_rq().
+ */
static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
u64 wake_flags, bool *found)
{
+ const struct cpumask *llc_cpus = NULL;
+ const struct cpumask *numa_cpus = NULL;
s32 cpu;
*found = false;
+
+ /*
+ * This is necessary to protect llc_cpus.
+ */
+ rcu_read_lock();
+
+ /*
+ * Determine the scheduling domain only if the task is allowed to run
+ * on all CPUs.
+ *
+ * This is done primarily for efficiency, as it avoids the overhead of
+ * updating a cpumask every time we need to select an idle CPU (which
+ * can be costly in large SMP systems), but it also aligns logically:
+ * if a task's scheduling domain is restricted by user-space (through
+ * CPU affinity), the task will simply use the flat scheduling domain
+ * defined by user-space.
+ */
+ if (p->nr_cpus_allowed >= num_possible_cpus()) {
+ if (static_branch_maybe(CONFIG_NUMA, &scx_selcpu_topo_numa))
+ numa_cpus = cpumask_of_node(cpu_to_node(prev_cpu));
+
+ if (static_branch_maybe(CONFIG_SCHED_MC, &scx_selcpu_topo_llc)) {
+ struct sched_domain *sd;
+
+ sd = rcu_dereference(per_cpu(sd_llc, prev_cpu));
+ if (sd)
+ llc_cpus = sched_domain_span(sd);
+ }
+ }
+
/*
- * If WAKE_SYNC, the waker's local DSQ is empty, and the system is
- * under utilized, wake up @p to the local DSQ of the waker. Checking
- * only for an empty local DSQ is insufficient as it could give the
- * wakee an unfair advantage when the system is oversaturated.
- * Checking only for the presence of idle CPUs is also insufficient as
- * the local DSQ of the waker could have tasks piled up on it even if
- * there is an idle core elsewhere on the system.
- */
- cpu = smp_processor_id();
- if ((wake_flags & SCX_WAKE_SYNC) &&
- !cpumask_empty(idle_masks.cpu) && !(current->flags & PF_EXITING) &&
- cpu_rq(cpu)->scx.local_dsq.nr == 0) {
- if (cpumask_test_cpu(cpu, p->cpus_ptr))
+ * If WAKE_SYNC, try to migrate the wakee to the waker's CPU.
+ */
+ if (wake_flags & SCX_WAKE_SYNC) {
+ cpu = smp_processor_id();
+
+ /*
+ * If the waker's CPU is cache affine and prev_cpu is idle,
+ * then avoid a migration.
+ */
+ if (cpus_share_cache(cpu, prev_cpu) &&
+ test_and_clear_cpu_idle(prev_cpu)) {
+ cpu = prev_cpu;
goto cpu_found;
+ }
+
+ /*
+ * If the waker's local DSQ is empty, and the system is under
+ * utilized, try to wake up @p to the local DSQ of the waker.
+ *
+ * Checking only for an empty local DSQ is insufficient as it
+ * could give the wakee an unfair advantage when the system is
+ * oversaturated.
+ *
+ * Checking only for the presence of idle CPUs is also
+ * insufficient as the local DSQ of the waker could have tasks
+ * piled up on it even if there is an idle core elsewhere on
+ * the system.
+ */
+ if (!cpumask_empty(idle_masks.cpu) &&
+ !(current->flags & PF_EXITING) &&
+ cpu_rq(cpu)->scx.local_dsq.nr == 0) {
+ if (cpumask_test_cpu(cpu, p->cpus_ptr))
+ goto cpu_found;
+ }
}
/*
@@ -3127,29 +3432,80 @@ static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
* partially idle @prev_cpu.
*/
if (sched_smt_active()) {
+ /*
+ * Keep using @prev_cpu if it's part of a fully idle core.
+ */
if (cpumask_test_cpu(prev_cpu, idle_masks.smt) &&
test_and_clear_cpu_idle(prev_cpu)) {
cpu = prev_cpu;
goto cpu_found;
}
+ /*
+ * Search for any fully idle core in the same LLC domain.
+ */
+ if (llc_cpus) {
+ cpu = scx_pick_idle_cpu(llc_cpus, SCX_PICK_IDLE_CORE);
+ if (cpu >= 0)
+ goto cpu_found;
+ }
+
+ /*
+ * Search for any fully idle core in the same NUMA node.
+ */
+ if (numa_cpus) {
+ cpu = scx_pick_idle_cpu(numa_cpus, SCX_PICK_IDLE_CORE);
+ if (cpu >= 0)
+ goto cpu_found;
+ }
+
+ /*
+ * Search for any full idle core usable by the task.
+ */
cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE);
if (cpu >= 0)
goto cpu_found;
}
+ /*
+ * Use @prev_cpu if it's idle.
+ */
if (test_and_clear_cpu_idle(prev_cpu)) {
cpu = prev_cpu;
goto cpu_found;
}
+ /*
+ * Search for any idle CPU in the same LLC domain.
+ */
+ if (llc_cpus) {
+ cpu = scx_pick_idle_cpu(llc_cpus, 0);
+ if (cpu >= 0)
+ goto cpu_found;
+ }
+
+ /*
+ * Search for any idle CPU in the same NUMA node.
+ */
+ if (numa_cpus) {
+ cpu = scx_pick_idle_cpu(numa_cpus, 0);
+ if (cpu >= 0)
+ goto cpu_found;
+ }
+
+ /*
+ * Search for any idle CPU usable by the task.
+ */
cpu = scx_pick_idle_cpu(p->cpus_ptr, 0);
if (cpu >= 0)
goto cpu_found;
+ rcu_read_unlock();
return prev_cpu;
cpu_found:
+ rcu_read_unlock();
+
*found = true;
return cpu;
}
@@ -3272,6 +3628,9 @@ static void handle_hotplug(struct rq *rq, bool online)
atomic_long_inc(&scx_hotplug_seq);
+ if (scx_enabled())
+ update_selcpu_topology();
+
if (online && SCX_HAS_OP(cpu_online))
SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu);
else if (!online && SCX_HAS_OP(cpu_offline))
@@ -3567,12 +3926,7 @@ static void scx_ops_exit_task(struct task_struct *p)
void init_scx_entity(struct sched_ext_entity *scx)
{
- /*
- * init_idle() calls this function again after fork sequence is
- * complete. Don't touch ->tasks_node as it's already linked.
- */
- memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node));
-
+ memset(scx, 0, sizeof(*scx));
INIT_LIST_HEAD(&scx->dsq_list.node);
RB_CLEAR_NODE(&scx->dsq_priq);
scx->sticky_cpu = -1;
@@ -4286,6 +4640,49 @@ bool task_should_scx(int policy)
}
/**
+ * scx_softlockup - sched_ext softlockup handler
+ *
+ * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can
+ * live-lock the system by making many CPUs target the same DSQ to the point
+ * where soft-lockup detection triggers. This function is called from
+ * soft-lockup watchdog when the triggering point is close and tries to unjam
+ * the system by enabling the breather and aborting the BPF scheduler.
+ */
+void scx_softlockup(u32 dur_s)
+{
+ switch (scx_ops_enable_state()) {
+ case SCX_OPS_ENABLING:
+ case SCX_OPS_ENABLED:
+ break;
+ default:
+ return;
+ }
+
+ /* allow only one instance, cleared at the end of scx_ops_bypass() */
+ if (test_and_set_bit(0, &scx_in_softlockup))
+ return;
+
+ printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n",
+ smp_processor_id(), dur_s, scx_ops.name);
+
+ /*
+ * Some CPUs may be trapped in the dispatch paths. Enable breather
+ * immediately; otherwise, we might even be able to get to
+ * scx_ops_bypass().
+ */
+ atomic_inc(&scx_ops_breather_depth);
+
+ scx_ops_error("soft lockup - CPU#%d stuck for %us",
+ smp_processor_id(), dur_s);
+}
+
+static void scx_clear_softlockup(void)
+{
+ if (test_and_clear_bit(0, &scx_in_softlockup))
+ atomic_dec(&scx_ops_breather_depth);
+}
+
+/**
* scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress
*
* Bypassing guarantees that all runnable tasks make forward progress without
@@ -4317,10 +4714,11 @@ bool task_should_scx(int policy)
*/
static void scx_ops_bypass(bool bypass)
{
+ static DEFINE_RAW_SPINLOCK(bypass_lock);
int cpu;
unsigned long flags;
- raw_spin_lock_irqsave(&__scx_ops_bypass_lock, flags);
+ raw_spin_lock_irqsave(&bypass_lock, flags);
if (bypass) {
scx_ops_bypass_depth++;
WARN_ON_ONCE(scx_ops_bypass_depth <= 0);
@@ -4333,6 +4731,8 @@ static void scx_ops_bypass(bool bypass)
goto unlock;
}
+ atomic_inc(&scx_ops_breather_depth);
+
/*
* No task property is changing. We just need to make sure all currently
* queued tasks are re-queued according to the new scx_rq_bypassing()
@@ -4388,8 +4788,11 @@ static void scx_ops_bypass(bool bypass)
/* resched to restore ticks and idle state */
resched_cpu(cpu);
}
+
+ atomic_dec(&scx_ops_breather_depth);
unlock:
- raw_spin_unlock_irqrestore(&__scx_ops_bypass_lock, flags);
+ raw_spin_unlock_irqrestore(&bypass_lock, flags);
+ scx_clear_softlockup();
}
static void free_exit_info(struct scx_exit_info *ei)
@@ -5100,6 +5503,9 @@ static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
static_branch_enable_cpuslocked(&scx_has_op[i]);
check_hotplug_seq(ops);
+#ifdef CONFIG_SMP
+ update_selcpu_topology();
+#endif
cpus_read_unlock();
ret = validate_ops(ops);
@@ -5307,67 +5713,7 @@ err_disable:
#include <linux/bpf.h>
#include <linux/btf.h>
-extern struct btf *btf_vmlinux;
static const struct btf_type *task_struct_type;
-static u32 task_struct_type_id;
-
-static bool set_arg_maybe_null(const char *op, int arg_n, int off, int size,
- enum bpf_access_type type,
- const struct bpf_prog *prog,
- struct bpf_insn_access_aux *info)
-{
- struct btf *btf = bpf_get_btf_vmlinux();
- const struct bpf_struct_ops_desc *st_ops_desc;
- const struct btf_member *member;
- const struct btf_type *t;
- u32 btf_id, member_idx;
- const char *mname;
-
- /* struct_ops op args are all sequential, 64-bit numbers */
- if (off != arg_n * sizeof(__u64))
- return false;
-
- /* btf_id should be the type id of struct sched_ext_ops */
- btf_id = prog->aux->attach_btf_id;
- st_ops_desc = bpf_struct_ops_find(btf, btf_id);
- if (!st_ops_desc)
- return false;
-
- /* BTF type of struct sched_ext_ops */
- t = st_ops_desc->type;
-
- member_idx = prog->expected_attach_type;
- if (member_idx >= btf_type_vlen(t))
- return false;
-
- /*
- * Get the member name of this struct_ops program, which corresponds to
- * a field in struct sched_ext_ops. For example, the member name of the
- * dispatch struct_ops program (callback) is "dispatch".
- */
- member = &btf_type_member(t)[member_idx];
- mname = btf_name_by_offset(btf_vmlinux, member->name_off);
-
- if (!strcmp(mname, op)) {
- /*
- * The value is a pointer to a type (struct task_struct) given
- * by a BTF ID (PTR_TO_BTF_ID). It is trusted (PTR_TRUSTED),
- * however, can be a NULL (PTR_MAYBE_NULL). The BPF program
- * should check the pointer to make sure it is not NULL before
- * using it, or the verifier will reject the program.
- *
- * Longer term, this is something that should be addressed by
- * BTF, and be fully contained within the verifier.
- */
- info->reg_type = PTR_MAYBE_NULL | PTR_TO_BTF_ID | PTR_TRUSTED;
- info->btf = btf_vmlinux;
- info->btf_id = task_struct_type_id;
-
- return true;
- }
-
- return false;
-}
static bool bpf_scx_is_valid_access(int off, int size,
enum bpf_access_type type,
@@ -5376,9 +5722,6 @@ static bool bpf_scx_is_valid_access(int off, int size,
{
if (type != BPF_READ)
return false;
- if (set_arg_maybe_null("dispatch", 1, off, size, type, prog, info) ||
- set_arg_maybe_null("yield", 1, off, size, type, prog, info))
- return true;
if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
return false;
if (off % size != 0)
@@ -5513,13 +5856,7 @@ static void bpf_scx_unreg(void *kdata, struct bpf_link *link)
static int bpf_scx_init(struct btf *btf)
{
- s32 type_id;
-
- type_id = btf_find_by_name_kind(btf, "task_struct", BTF_KIND_STRUCT);
- if (type_id < 0)
- return -EINVAL;
- task_struct_type = btf_type_by_id(btf, type_id);
- task_struct_type_id = type_id;
+ task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]);
return 0;
}
@@ -5541,78 +5878,78 @@ static int bpf_scx_validate(void *kdata)
return 0;
}
-static s32 select_cpu_stub(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
-static void enqueue_stub(struct task_struct *p, u64 enq_flags) {}
-static void dequeue_stub(struct task_struct *p, u64 enq_flags) {}
-static void dispatch_stub(s32 prev_cpu, struct task_struct *p) {}
-static void tick_stub(struct task_struct *p) {}
-static void runnable_stub(struct task_struct *p, u64 enq_flags) {}
-static void running_stub(struct task_struct *p) {}
-static void stopping_stub(struct task_struct *p, bool runnable) {}
-static void quiescent_stub(struct task_struct *p, u64 deq_flags) {}
-static bool yield_stub(struct task_struct *from, struct task_struct *to) { return false; }
-static bool core_sched_before_stub(struct task_struct *a, struct task_struct *b) { return false; }
-static void set_weight_stub(struct task_struct *p, u32 weight) {}
-static void set_cpumask_stub(struct task_struct *p, const struct cpumask *mask) {}
-static void update_idle_stub(s32 cpu, bool idle) {}
-static void cpu_acquire_stub(s32 cpu, struct scx_cpu_acquire_args *args) {}
-static void cpu_release_stub(s32 cpu, struct scx_cpu_release_args *args) {}
-static s32 init_task_stub(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
-static void exit_task_stub(struct task_struct *p, struct scx_exit_task_args *args) {}
-static void enable_stub(struct task_struct *p) {}
-static void disable_stub(struct task_struct *p) {}
+static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
+static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {}
+static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {}
+static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {}
+static void sched_ext_ops__tick(struct task_struct *p) {}
+static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {}
+static void sched_ext_ops__running(struct task_struct *p) {}
+static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {}
+static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {}
+static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; }
+static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; }
+static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {}
+static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {}
+static void sched_ext_ops__update_idle(s32 cpu, bool idle) {}
+static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {}
+static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {}
+static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
+static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {}
+static void sched_ext_ops__enable(struct task_struct *p) {}
+static void sched_ext_ops__disable(struct task_struct *p) {}
#ifdef CONFIG_EXT_GROUP_SCHED
-static s32 cgroup_init_stub(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; }
-static void cgroup_exit_stub(struct cgroup *cgrp) {}
-static s32 cgroup_prep_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; }
-static void cgroup_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
-static void cgroup_cancel_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
-static void cgroup_set_weight_stub(struct cgroup *cgrp, u32 weight) {}
+static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; }
+static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {}
+static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; }
+static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
+static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
+static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {}
#endif
-static void cpu_online_stub(s32 cpu) {}
-static void cpu_offline_stub(s32 cpu) {}
-static s32 init_stub(void) { return -EINVAL; }
-static void exit_stub(struct scx_exit_info *info) {}
-static void dump_stub(struct scx_dump_ctx *ctx) {}
-static void dump_cpu_stub(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {}
-static void dump_task_stub(struct scx_dump_ctx *ctx, struct task_struct *p) {}
+static void sched_ext_ops__cpu_online(s32 cpu) {}
+static void sched_ext_ops__cpu_offline(s32 cpu) {}
+static s32 sched_ext_ops__init(void) { return -EINVAL; }
+static void sched_ext_ops__exit(struct scx_exit_info *info) {}
+static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {}
+static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {}
+static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {}
static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
- .select_cpu = select_cpu_stub,
- .enqueue = enqueue_stub,
- .dequeue = dequeue_stub,
- .dispatch = dispatch_stub,
- .tick = tick_stub,
- .runnable = runnable_stub,
- .running = running_stub,
- .stopping = stopping_stub,
- .quiescent = quiescent_stub,
- .yield = yield_stub,
- .core_sched_before = core_sched_before_stub,
- .set_weight = set_weight_stub,
- .set_cpumask = set_cpumask_stub,
- .update_idle = update_idle_stub,
- .cpu_acquire = cpu_acquire_stub,
- .cpu_release = cpu_release_stub,
- .init_task = init_task_stub,
- .exit_task = exit_task_stub,
- .enable = enable_stub,
- .disable = disable_stub,
+ .select_cpu = sched_ext_ops__select_cpu,
+ .enqueue = sched_ext_ops__enqueue,
+ .dequeue = sched_ext_ops__dequeue,
+ .dispatch = sched_ext_ops__dispatch,
+ .tick = sched_ext_ops__tick,
+ .runnable = sched_ext_ops__runnable,
+ .running = sched_ext_ops__running,
+ .stopping = sched_ext_ops__stopping,
+ .quiescent = sched_ext_ops__quiescent,
+ .yield = sched_ext_ops__yield,
+ .core_sched_before = sched_ext_ops__core_sched_before,
+ .set_weight = sched_ext_ops__set_weight,
+ .set_cpumask = sched_ext_ops__set_cpumask,
+ .update_idle = sched_ext_ops__update_idle,
+ .cpu_acquire = sched_ext_ops__cpu_acquire,
+ .cpu_release = sched_ext_ops__cpu_release,
+ .init_task = sched_ext_ops__init_task,
+ .exit_task = sched_ext_ops__exit_task,
+ .enable = sched_ext_ops__enable,
+ .disable = sched_ext_ops__disable,
#ifdef CONFIG_EXT_GROUP_SCHED
- .cgroup_init = cgroup_init_stub,
- .cgroup_exit = cgroup_exit_stub,
- .cgroup_prep_move = cgroup_prep_move_stub,
- .cgroup_move = cgroup_move_stub,
- .cgroup_cancel_move = cgroup_cancel_move_stub,
- .cgroup_set_weight = cgroup_set_weight_stub,
+ .cgroup_init = sched_ext_ops__cgroup_init,
+ .cgroup_exit = sched_ext_ops__cgroup_exit,
+ .cgroup_prep_move = sched_ext_ops__cgroup_prep_move,
+ .cgroup_move = sched_ext_ops__cgroup_move,
+ .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move,
+ .cgroup_set_weight = sched_ext_ops__cgroup_set_weight,
#endif
- .cpu_online = cpu_online_stub,
- .cpu_offline = cpu_offline_stub,
- .init = init_stub,
- .exit = exit_stub,
- .dump = dump_stub,
- .dump_cpu = dump_cpu_stub,
- .dump_task = dump_task_stub,
+ .cpu_online = sched_ext_ops__cpu_online,
+ .cpu_offline = sched_ext_ops__cpu_offline,
+ .init = sched_ext_ops__init,
+ .exit = sched_ext_ops__exit,
+ .dump = sched_ext_ops__dump,
+ .dump_cpu = sched_ext_ops__dump_cpu,
+ .dump_task = sched_ext_ops__dump_task,
};
static struct bpf_struct_ops bpf_sched_ext_ops = {
@@ -5759,7 +6096,7 @@ static void kick_cpus_irq_workfn(struct irq_work *irq_work)
if (cpu != cpu_of(this_rq)) {
/*
* Pairs with smp_store_release() issued by this CPU in
- * scx_next_task_picked() on the resched path.
+ * switch_class() on the resched path.
*
* We busy-wait here to guarantee that no other task can
* be scheduled on our core before the target CPU has
@@ -5944,7 +6281,7 @@ static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = {
.set = &scx_kfunc_ids_select_cpu,
};
-static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags)
+static bool scx_dsq_insert_preamble(struct task_struct *p, u64 enq_flags)
{
if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
return false;
@@ -5964,7 +6301,8 @@ static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags)
return true;
}
-static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags)
+static void scx_dsq_insert_commit(struct task_struct *p, u64 dsq_id,
+ u64 enq_flags)
{
struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
struct task_struct *ddsp_task;
@@ -5991,14 +6329,14 @@ static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags
__bpf_kfunc_start_defs();
/**
- * scx_bpf_dispatch - Dispatch a task into the FIFO queue of a DSQ
- * @p: task_struct to dispatch
- * @dsq_id: DSQ to dispatch to
+ * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ
+ * @p: task_struct to insert
+ * @dsq_id: DSQ to insert into
* @slice: duration @p can run for in nsecs, 0 to keep the current value
* @enq_flags: SCX_ENQ_*
*
- * Dispatch @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe
- * to call this function spuriously. Can be called from ops.enqueue(),
+ * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to
+ * call this function spuriously. Can be called from ops.enqueue(),
* ops.select_cpu(), and ops.dispatch().
*
* When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
@@ -6007,14 +6345,14 @@ __bpf_kfunc_start_defs();
* ops.select_cpu() to be on the target CPU in the first place.
*
* When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
- * will be directly dispatched to the corresponding dispatch queue after
- * ops.select_cpu() returns. If @p is dispatched to SCX_DSQ_LOCAL, it will be
- * dispatched to the local DSQ of the CPU returned by ops.select_cpu().
+ * will be directly inserted into the corresponding dispatch queue after
+ * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be
+ * inserted into the local DSQ of the CPU returned by ops.select_cpu().
* @enq_flags are OR'd with the enqueue flags on the enqueue path before the
- * task is dispatched.
+ * task is inserted.
*
* When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
- * and this function can be called upto ops.dispatch_max_batch times to dispatch
+ * and this function can be called upto ops.dispatch_max_batch times to insert
* multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
* remaining slots. scx_bpf_consume() flushes the batch and resets the counter.
*
@@ -6026,10 +6364,10 @@ __bpf_kfunc_start_defs();
* %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
* scx_bpf_kick_cpu() to trigger scheduling.
*/
-__bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice,
- u64 enq_flags)
+__bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice,
+ u64 enq_flags)
{
- if (!scx_dispatch_preamble(p, enq_flags))
+ if (!scx_dsq_insert_preamble(p, enq_flags))
return;
if (slice)
@@ -6037,30 +6375,42 @@ __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice,
else
p->scx.slice = p->scx.slice ?: 1;
- scx_dispatch_commit(p, dsq_id, enq_flags);
+ scx_dsq_insert_commit(p, dsq_id, enq_flags);
+}
+
+/* for backward compatibility, will be removed in v6.15 */
+__bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice,
+ u64 enq_flags)
+{
+ printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch() renamed to scx_bpf_dsq_insert()");
+ scx_bpf_dsq_insert(p, dsq_id, slice, enq_flags);
}
/**
- * scx_bpf_dispatch_vtime - Dispatch a task into the vtime priority queue of a DSQ
- * @p: task_struct to dispatch
- * @dsq_id: DSQ to dispatch to
+ * scx_bpf_dsq_insert_vtime - Insert a task into the vtime priority queue of a DSQ
+ * @p: task_struct to insert
+ * @dsq_id: DSQ to insert into
* @slice: duration @p can run for in nsecs, 0 to keep the current value
* @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
* @enq_flags: SCX_ENQ_*
*
- * Dispatch @p into the vtime priority queue of the DSQ identified by @dsq_id.
- * Tasks queued into the priority queue are ordered by @vtime and always
- * consumed after the tasks in the FIFO queue. All other aspects are identical
- * to scx_bpf_dispatch().
+ * Insert @p into the vtime priority queue of the DSQ identified by @dsq_id.
+ * Tasks queued into the priority queue are ordered by @vtime. All other aspects
+ * are identical to scx_bpf_dsq_insert().
*
* @vtime ordering is according to time_before64() which considers wrapping. A
* numerically larger vtime may indicate an earlier position in the ordering and
* vice-versa.
+ *
+ * A DSQ can only be used as a FIFO or priority queue at any given time and this
+ * function must not be called on a DSQ which already has one or more FIFO tasks
+ * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and
+ * SCX_DSQ_GLOBAL) cannot be used as priority queues.
*/
-__bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id,
- u64 slice, u64 vtime, u64 enq_flags)
+__bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id,
+ u64 slice, u64 vtime, u64 enq_flags)
{
- if (!scx_dispatch_preamble(p, enq_flags))
+ if (!scx_dsq_insert_preamble(p, enq_flags))
return;
if (slice)
@@ -6070,12 +6420,22 @@ __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id,
p->scx.dsq_vtime = vtime;
- scx_dispatch_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
+ scx_dsq_insert_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
+}
+
+/* for backward compatibility, will be removed in v6.15 */
+__bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id,
+ u64 slice, u64 vtime, u64 enq_flags)
+{
+ printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_vtime() renamed to scx_bpf_dsq_insert_vtime()");
+ scx_bpf_dsq_insert_vtime(p, dsq_id, slice, vtime, enq_flags);
}
__bpf_kfunc_end_defs();
BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
+BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU)
+BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU)
BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
@@ -6085,12 +6445,11 @@ static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
.set = &scx_kfunc_ids_enqueue_dispatch,
};
-static bool scx_dispatch_from_dsq(struct bpf_iter_scx_dsq_kern *kit,
- struct task_struct *p, u64 dsq_id,
- u64 enq_flags)
+static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit,
+ struct task_struct *p, u64 dsq_id, u64 enq_flags)
{
struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq;
- struct rq *this_rq, *src_rq, *dst_rq, *locked_rq;
+ struct rq *this_rq, *src_rq, *locked_rq;
bool dispatched = false;
bool in_balance;
unsigned long flags;
@@ -6118,6 +6477,13 @@ static bool scx_dispatch_from_dsq(struct bpf_iter_scx_dsq_kern *kit,
raw_spin_rq_lock(src_rq);
}
+ /*
+ * If the BPF scheduler keeps calling this function repeatedly, it can
+ * cause similar live-lock conditions as consume_dispatch_q(). Insert a
+ * breather if necessary.
+ */
+ scx_ops_breather(src_rq);
+
locked_rq = src_rq;
raw_spin_lock(&src_dsq->lock);
@@ -6136,51 +6502,18 @@ static bool scx_dispatch_from_dsq(struct bpf_iter_scx_dsq_kern *kit,
/* @p is still on $src_dsq and stable, determine the destination */
dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p);
- if (dst_dsq->id == SCX_DSQ_LOCAL) {
- dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
- if (!task_can_run_on_remote_rq(p, dst_rq, true)) {
- dst_dsq = find_global_dsq(p);
- dst_rq = src_rq;
- }
- } else {
- /* no need to migrate if destination is a non-local DSQ */
- dst_rq = src_rq;
- }
-
/*
- * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different
- * CPU, @p will be migrated.
+ * Apply vtime and slice updates before moving so that the new time is
+ * visible before inserting into $dst_dsq. @p is still on $src_dsq but
+ * this is safe as we're locking it.
*/
- if (dst_dsq->id == SCX_DSQ_LOCAL) {
- /* @p is going from a non-local DSQ to a local DSQ */
- if (src_rq == dst_rq) {
- task_unlink_from_dsq(p, src_dsq);
- move_local_task_to_local_dsq(p, enq_flags,
- src_dsq, dst_rq);
- raw_spin_unlock(&src_dsq->lock);
- } else {
- raw_spin_unlock(&src_dsq->lock);
- move_remote_task_to_local_dsq(p, enq_flags,
- src_rq, dst_rq);
- locked_rq = dst_rq;
- }
- } else {
- /*
- * @p is going from a non-local DSQ to a non-local DSQ. As
- * $src_dsq is already locked, do an abbreviated dequeue.
- */
- task_unlink_from_dsq(p, src_dsq);
- p->scx.dsq = NULL;
- raw_spin_unlock(&src_dsq->lock);
-
- if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME)
- p->scx.dsq_vtime = kit->vtime;
- dispatch_enqueue(dst_dsq, p, enq_flags);
- }
-
+ if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME)
+ p->scx.dsq_vtime = kit->vtime;
if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE)
p->scx.slice = kit->slice;
+ /* execute move */
+ locked_rq = move_task_between_dsqs(p, enq_flags, src_dsq, dst_dsq);
dispatched = true;
out:
if (in_balance) {
@@ -6232,21 +6565,20 @@ __bpf_kfunc void scx_bpf_dispatch_cancel(void)
}
/**
- * scx_bpf_consume - Transfer a task from a DSQ to the current CPU's local DSQ
- * @dsq_id: DSQ to consume
+ * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ
+ * @dsq_id: DSQ to move task from
*
- * Consume a task from the non-local DSQ identified by @dsq_id and transfer it
- * to the current CPU's local DSQ for execution. Can only be called from
- * ops.dispatch().
+ * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's
+ * local DSQ for execution. Can only be called from ops.dispatch().
*
- * This function flushes the in-flight dispatches from scx_bpf_dispatch() before
- * trying to consume the specified DSQ. It may also grab rq locks and thus can't
- * be called under any BPF locks.
+ * This function flushes the in-flight dispatches from scx_bpf_dsq_insert()
+ * before trying to move from the specified DSQ. It may also grab rq locks and
+ * thus can't be called under any BPF locks.
*
- * Returns %true if a task has been consumed, %false if there isn't any task to
- * consume.
+ * Returns %true if a task has been moved, %false if there isn't any task to
+ * move.
*/
-__bpf_kfunc bool scx_bpf_consume(u64 dsq_id)
+__bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id)
{
struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
struct scx_dispatch_q *dsq;
@@ -6276,17 +6608,24 @@ __bpf_kfunc bool scx_bpf_consume(u64 dsq_id)
}
}
+/* for backward compatibility, will be removed in v6.15 */
+__bpf_kfunc bool scx_bpf_consume(u64 dsq_id)
+{
+ printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_consume() renamed to scx_bpf_dsq_move_to_local()");
+ return scx_bpf_dsq_move_to_local(dsq_id);
+}
+
/**
- * scx_bpf_dispatch_from_dsq_set_slice - Override slice when dispatching from DSQ
+ * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs
* @it__iter: DSQ iterator in progress
- * @slice: duration the dispatched task can run for in nsecs
+ * @slice: duration the moved task can run for in nsecs
*
- * Override the slice of the next task that will be dispatched from @it__iter
- * using scx_bpf_dispatch_from_dsq[_vtime](). If this function is not called,
- * the previous slice duration is kept.
+ * Override the slice of the next task that will be moved from @it__iter using
+ * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous
+ * slice duration is kept.
*/
-__bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice(
- struct bpf_iter_scx_dsq *it__iter, u64 slice)
+__bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter,
+ u64 slice)
{
struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
@@ -6294,18 +6633,26 @@ __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice(
kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE;
}
+/* for backward compatibility, will be removed in v6.15 */
+__bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice(
+ struct bpf_iter_scx_dsq *it__iter, u64 slice)
+{
+ printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_slice() renamed to scx_bpf_dsq_move_set_slice()");
+ scx_bpf_dsq_move_set_slice(it__iter, slice);
+}
+
/**
- * scx_bpf_dispatch_from_dsq_set_vtime - Override vtime when dispatching from DSQ
+ * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs
* @it__iter: DSQ iterator in progress
* @vtime: task's ordering inside the vtime-sorted queue of the target DSQ
*
- * Override the vtime of the next task that will be dispatched from @it__iter
- * using scx_bpf_dispatch_from_dsq_vtime(). If this function is not called, the
- * previous slice vtime is kept. If scx_bpf_dispatch_from_dsq() is used to
- * dispatch the next task, the override is ignored and cleared.
+ * Override the vtime of the next task that will be moved from @it__iter using
+ * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice
+ * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the
+ * override is ignored and cleared.
*/
-__bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime(
- struct bpf_iter_scx_dsq *it__iter, u64 vtime)
+__bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter,
+ u64 vtime)
{
struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
@@ -6313,8 +6660,16 @@ __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime(
kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME;
}
+/* for backward compatibility, will be removed in v6.15 */
+__bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime(
+ struct bpf_iter_scx_dsq *it__iter, u64 vtime)
+{
+ printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_vtime() renamed to scx_bpf_dsq_move_set_vtime()");
+ scx_bpf_dsq_move_set_vtime(it__iter, vtime);
+}
+
/**
- * scx_bpf_dispatch_from_dsq - Move a task from DSQ iteration to a DSQ
+ * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ
* @it__iter: DSQ iterator in progress
* @p: task to transfer
* @dsq_id: DSQ to move @p to
@@ -6329,8 +6684,7 @@ __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime(
* @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have
* been queued before the iteration started.
*
- * @p's slice is kept by default. Use scx_bpf_dispatch_from_dsq_set_slice() to
- * update.
+ * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update.
*
* Can be called from ops.dispatch() or any BPF context which doesn't hold a rq
* lock (e.g. BPF timers or SYSCALL programs).
@@ -6338,16 +6692,25 @@ __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime(
* Returns %true if @p has been consumed, %false if @p had already been consumed
* or dequeued.
*/
+__bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter,
+ struct task_struct *p, u64 dsq_id,
+ u64 enq_flags)
+{
+ return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter,
+ p, dsq_id, enq_flags);
+}
+
+/* for backward compatibility, will be removed in v6.15 */
__bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter,
struct task_struct *p, u64 dsq_id,
u64 enq_flags)
{
- return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter,
- p, dsq_id, enq_flags);
+ printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq() renamed to scx_bpf_dsq_move()");
+ return scx_bpf_dsq_move(it__iter, p, dsq_id, enq_flags);
}
/**
- * scx_bpf_dispatch_vtime_from_dsq - Move a task from DSQ iteration to a PRIQ DSQ
+ * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ
* @it__iter: DSQ iterator in progress
* @p: task to transfer
* @dsq_id: DSQ to move @p to
@@ -6357,19 +6720,27 @@ __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter,
* priority queue of the DSQ specified by @dsq_id. The destination must be a
* user DSQ as only user DSQs support priority queue.
*
- * @p's slice and vtime are kept by default. Use
- * scx_bpf_dispatch_from_dsq_set_slice() and
- * scx_bpf_dispatch_from_dsq_set_vtime() to update.
+ * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice()
+ * and scx_bpf_dsq_move_set_vtime() to update.
*
- * All other aspects are identical to scx_bpf_dispatch_from_dsq(). See
- * scx_bpf_dispatch_vtime() for more information on @vtime.
+ * All other aspects are identical to scx_bpf_dsq_move(). See
+ * scx_bpf_dsq_insert_vtime() for more information on @vtime.
*/
+__bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter,
+ struct task_struct *p, u64 dsq_id,
+ u64 enq_flags)
+{
+ return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter,
+ p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
+}
+
+/* for backward compatibility, will be removed in v6.15 */
__bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter,
struct task_struct *p, u64 dsq_id,
u64 enq_flags)
{
- return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter,
- p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
+ printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_vtime() renamed to scx_bpf_dsq_move_vtime()");
+ return scx_bpf_dsq_move_vtime(it__iter, p, dsq_id, enq_flags);
}
__bpf_kfunc_end_defs();
@@ -6377,7 +6748,12 @@ __bpf_kfunc_end_defs();
BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
+BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local)
BTF_ID_FLAGS(func, scx_bpf_consume)
+BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice)
+BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime)
+BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
+BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice)
BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime)
BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
@@ -6478,6 +6854,12 @@ __bpf_kfunc_end_defs();
BTF_KFUNCS_START(scx_kfunc_ids_unlocked)
BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
+BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice)
+BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime)
+BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
+BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
+BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice)
+BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime)
BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
BTF_KFUNCS_END(scx_kfunc_ids_unlocked)
@@ -7153,15 +7535,8 @@ __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p)
if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p))
goto out;
- /*
- * A task_group may either be a cgroup or an autogroup. In the latter
- * case, @tg->css.cgroup is %NULL. A task_group can't become the other
- * kind once created.
- */
- if (tg && tg->css.cgroup)
- cgrp = tg->css.cgroup;
- else
- cgrp = &cgrp_dfl_root.cgrp;
+ cgrp = tg_cgrp(tg);
+
out:
cgroup_get(cgrp);
return cgrp;
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 2d16c8545c71..fbdca89c677f 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -1200,12 +1200,12 @@ static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
*/
s64 update_curr_common(struct rq *rq)
{
- struct task_struct *curr = rq->curr;
+ struct task_struct *donor = rq->donor;
s64 delta_exec;
- delta_exec = update_curr_se(rq, &curr->se);
+ delta_exec = update_curr_se(rq, &donor->se);
if (likely(delta_exec > 0))
- update_curr_task(curr, delta_exec);
+ update_curr_task(donor, delta_exec);
return delta_exec;
}
@@ -1251,14 +1251,14 @@ static void update_curr(struct cfs_rq *cfs_rq)
return;
if (resched || did_preempt_short(cfs_rq, curr)) {
- resched_curr(rq);
+ resched_curr_lazy(rq);
clear_buddies(cfs_rq, curr);
}
}
static void update_curr_fair(struct rq *rq)
{
- update_curr(cfs_rq_of(&rq->curr->se));
+ update_curr(cfs_rq_of(&rq->donor->se));
}
static inline void
@@ -5280,7 +5280,7 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
*
* EEVDF: placement strategy #1 / #2
*/
- if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
+ if (sched_feat(PLACE_LAG) && cfs_rq->nr_running && se->vlag) {
struct sched_entity *curr = cfs_rq->curr;
unsigned long load;
@@ -5678,15 +5678,9 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
* validating it and just reschedule.
*/
if (queued) {
- resched_curr(rq_of(cfs_rq));
+ resched_curr_lazy(rq_of(cfs_rq));
return;
}
- /*
- * don't let the period tick interfere with the hrtick preemption
- */
- if (!sched_feat(DOUBLE_TICK) &&
- hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
- return;
#endif
}
@@ -6822,7 +6816,7 @@ static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
s64 delta = slice - ran;
if (delta < 0) {
- if (task_current(rq, p))
+ if (task_current_donor(rq, p))
resched_curr(rq);
return;
}
@@ -6837,12 +6831,12 @@ static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
*/
static void hrtick_update(struct rq *rq)
{
- struct task_struct *curr = rq->curr;
+ struct task_struct *donor = rq->donor;
- if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
+ if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class)
return;
- hrtick_start_fair(rq, curr);
+ hrtick_start_fair(rq, donor);
}
#else /* !CONFIG_SCHED_HRTICK */
static inline void
@@ -8763,9 +8757,9 @@ static void set_next_buddy(struct sched_entity *se)
*/
static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
{
- struct task_struct *curr = rq->curr;
- struct sched_entity *se = &curr->se, *pse = &p->se;
- struct cfs_rq *cfs_rq = task_cfs_rq(curr);
+ struct task_struct *donor = rq->donor;
+ struct sched_entity *se = &donor->se, *pse = &p->se;
+ struct cfs_rq *cfs_rq = task_cfs_rq(donor);
int cse_is_idle, pse_is_idle;
if (unlikely(se == pse))
@@ -8794,7 +8788,7 @@ static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int
* prevents us from potentially nominating it as a false LAST_BUDDY
* below.
*/
- if (test_tsk_need_resched(curr))
+ if (test_tsk_need_resched(rq->curr))
return;
if (!sched_feat(WAKEUP_PREEMPTION))
@@ -8842,7 +8836,7 @@ static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int
return;
preempt:
- resched_curr(rq);
+ resched_curr_lazy(rq);
}
static struct task_struct *pick_task_fair(struct rq *rq)
@@ -13093,7 +13087,7 @@ prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
* our priority decreased, or if we are not currently running on
* this runqueue and our priority is higher than the current's
*/
- if (task_current(rq, p)) {
+ if (task_current_donor(rq, p)) {
if (p->prio > oldprio)
resched_curr(rq);
} else
@@ -13200,7 +13194,7 @@ static void switched_to_fair(struct rq *rq, struct task_struct *p)
* kick off the schedule if running, otherwise just see
* if we can still preempt the current task.
*/
- if (task_current(rq, p))
+ if (task_current_donor(rq, p))
resched_curr(rq);
else
wakeup_preempt(rq, p, 0);
diff --git a/kernel/sched/features.h b/kernel/sched/features.h
index 290874079f60..a3d331dd2d8f 100644
--- a/kernel/sched/features.h
+++ b/kernel/sched/features.h
@@ -19,7 +19,7 @@ SCHED_FEAT(PLACE_REL_DEADLINE, true)
*/
SCHED_FEAT(RUN_TO_PARITY, true)
/*
- * Allow wakeup of tasks with a shorter slice to cancel RESPECT_SLICE for
+ * Allow wakeup of tasks with a shorter slice to cancel RUN_TO_PARITY for
* current.
*/
SCHED_FEAT(PREEMPT_SHORT, true)
@@ -56,7 +56,6 @@ SCHED_FEAT(WAKEUP_PREEMPTION, true)
SCHED_FEAT(HRTICK, false)
SCHED_FEAT(HRTICK_DL, false)
-SCHED_FEAT(DOUBLE_TICK, false)
/*
* Decrement CPU capacity based on time not spent running tasks
diff --git a/kernel/sched/idle.c b/kernel/sched/idle.c
index d2f096bb274c..621696269584 100644
--- a/kernel/sched/idle.c
+++ b/kernel/sched/idle.c
@@ -271,7 +271,6 @@ static void do_idle(void)
tick_nohz_idle_enter();
while (!need_resched()) {
- rmb();
/*
* Interrupts shouldn't be re-enabled from that point on until
@@ -399,8 +398,8 @@ void play_idle_precise(u64 duration_ns, u64 latency_ns)
cpuidle_use_deepest_state(latency_ns);
it.done = 0;
- hrtimer_init_on_stack(&it.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
- it.timer.function = idle_inject_timer_fn;
+ hrtimer_setup_on_stack(&it.timer, idle_inject_timer_fn, CLOCK_MONOTONIC,
+ HRTIMER_MODE_REL_HARD);
hrtimer_start(&it.timer, ns_to_ktime(duration_ns),
HRTIMER_MODE_REL_PINNED_HARD);
diff --git a/kernel/sched/pelt.c b/kernel/sched/pelt.c
index a9c65d97b3ca..fc07382361a8 100644
--- a/kernel/sched/pelt.c
+++ b/kernel/sched/pelt.c
@@ -476,7 +476,7 @@ int update_irq_load_avg(struct rq *rq, u64 running)
bool update_other_load_avgs(struct rq *rq)
{
u64 now = rq_clock_pelt(rq);
- const struct sched_class *curr_class = rq->curr->sched_class;
+ const struct sched_class *curr_class = rq->donor->sched_class;
unsigned long hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
lockdep_assert_rq_held(rq);
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c
index 172c588de542..bd66a46b06ac 100644
--- a/kernel/sched/rt.c
+++ b/kernel/sched/rt.c
@@ -528,7 +528,7 @@ static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
{
- struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
+ struct task_struct *donor = rq_of_rt_rq(rt_rq)->donor;
struct rq *rq = rq_of_rt_rq(rt_rq);
struct sched_rt_entity *rt_se;
@@ -542,7 +542,7 @@ static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
else if (!on_rt_rq(rt_se))
enqueue_rt_entity(rt_se, 0);
- if (rt_rq->highest_prio.curr < curr->prio)
+ if (rt_rq->highest_prio.curr < donor->prio)
resched_curr(rq);
}
}
@@ -988,10 +988,10 @@ static inline int rt_se_prio(struct sched_rt_entity *rt_se)
*/
static void update_curr_rt(struct rq *rq)
{
- struct task_struct *curr = rq->curr;
+ struct task_struct *donor = rq->donor;
s64 delta_exec;
- if (curr->sched_class != &rt_sched_class)
+ if (donor->sched_class != &rt_sched_class)
return;
delta_exec = update_curr_common(rq);
@@ -999,7 +999,7 @@ static void update_curr_rt(struct rq *rq)
return;
#ifdef CONFIG_RT_GROUP_SCHED
- struct sched_rt_entity *rt_se = &curr->rt;
+ struct sched_rt_entity *rt_se = &donor->rt;
if (!rt_bandwidth_enabled())
return;
@@ -1535,7 +1535,7 @@ static int find_lowest_rq(struct task_struct *task);
static int
select_task_rq_rt(struct task_struct *p, int cpu, int flags)
{
- struct task_struct *curr;
+ struct task_struct *curr, *donor;
struct rq *rq;
bool test;
@@ -1547,6 +1547,7 @@ select_task_rq_rt(struct task_struct *p, int cpu, int flags)
rcu_read_lock();
curr = READ_ONCE(rq->curr); /* unlocked access */
+ donor = READ_ONCE(rq->donor);
/*
* If the current task on @p's runqueue is an RT task, then
@@ -1575,8 +1576,8 @@ select_task_rq_rt(struct task_struct *p, int cpu, int flags)
* systems like big.LITTLE.
*/
test = curr &&
- unlikely(rt_task(curr)) &&
- (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
+ unlikely(rt_task(donor)) &&
+ (curr->nr_cpus_allowed < 2 || donor->prio <= p->prio);
if (test || !rt_task_fits_capacity(p, cpu)) {
int target = find_lowest_rq(p);
@@ -1606,12 +1607,8 @@ out:
static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
- /*
- * Current can't be migrated, useless to reschedule,
- * let's hope p can move out.
- */
if (rq->curr->nr_cpus_allowed == 1 ||
- !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
+ !cpupri_find(&rq->rd->cpupri, rq->donor, NULL))
return;
/*
@@ -1654,7 +1651,9 @@ static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
*/
static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
{
- if (p->prio < rq->curr->prio) {
+ struct task_struct *donor = rq->donor;
+
+ if (p->prio < donor->prio) {
resched_curr(rq);
return;
}
@@ -1672,7 +1671,7 @@ static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
* to move current somewhere else, making room for our non-migratable
* task.
*/
- if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
+ if (p->prio == donor->prio && !test_tsk_need_resched(rq->curr))
check_preempt_equal_prio(rq, p);
#endif
}
@@ -1697,7 +1696,7 @@ static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool f
* utilization. We only care of the case where we start to schedule a
* rt task
*/
- if (rq->curr->sched_class != &rt_sched_class)
+ if (rq->donor->sched_class != &rt_sched_class)
update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
rt_queue_push_tasks(rq);
@@ -1773,15 +1772,6 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct task_s
/* Only try algorithms three times */
#define RT_MAX_TRIES 3
-static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
-{
- if (!task_on_cpu(rq, p) &&
- cpumask_test_cpu(cpu, &p->cpus_mask))
- return 1;
-
- return 0;
-}
-
/*
* Return the highest pushable rq's task, which is suitable to be executed
* on the CPU, NULL otherwise
@@ -1795,7 +1785,7 @@ static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
return NULL;
plist_for_each_entry(p, head, pushable_tasks) {
- if (pick_rt_task(rq, p, cpu))
+ if (task_is_pushable(rq, p, cpu))
return p;
}
@@ -1968,6 +1958,7 @@ static struct task_struct *pick_next_pushable_task(struct rq *rq)
BUG_ON(rq->cpu != task_cpu(p));
BUG_ON(task_current(rq, p));
+ BUG_ON(task_current_donor(rq, p));
BUG_ON(p->nr_cpus_allowed <= 1);
BUG_ON(!task_on_rq_queued(p));
@@ -2000,7 +1991,7 @@ retry:
* higher priority than current. If that's the case
* just reschedule current.
*/
- if (unlikely(next_task->prio < rq->curr->prio)) {
+ if (unlikely(next_task->prio < rq->donor->prio)) {
resched_curr(rq);
return 0;
}
@@ -2021,7 +2012,7 @@ retry:
* Note that the stoppers are masqueraded as SCHED_FIFO
* (cf. sched_set_stop_task()), so we can't rely on rt_task().
*/
- if (rq->curr->sched_class != &rt_sched_class)
+ if (rq->donor->sched_class != &rt_sched_class)
return 0;
cpu = find_lowest_rq(rq->curr);
@@ -2088,9 +2079,7 @@ retry:
goto retry;
}
- deactivate_task(rq, next_task, 0);
- set_task_cpu(next_task, lowest_rq->cpu);
- activate_task(lowest_rq, next_task, 0);
+ move_queued_task_locked(rq, lowest_rq, next_task);
resched_curr(lowest_rq);
ret = 1;
@@ -2355,15 +2344,13 @@ static void pull_rt_task(struct rq *this_rq)
* p if it is lower in priority than the
* current task on the run queue
*/
- if (p->prio < src_rq->curr->prio)
+ if (p->prio < src_rq->donor->prio)
goto skip;
if (is_migration_disabled(p)) {
push_task = get_push_task(src_rq);
} else {
- deactivate_task(src_rq, p, 0);
- set_task_cpu(p, this_cpu);
- activate_task(this_rq, p, 0);
+ move_queued_task_locked(src_rq, this_rq, p);
resched = true;
}
/*
@@ -2399,9 +2386,9 @@ static void task_woken_rt(struct rq *rq, struct task_struct *p)
bool need_to_push = !task_on_cpu(rq, p) &&
!test_tsk_need_resched(rq->curr) &&
p->nr_cpus_allowed > 1 &&
- (dl_task(rq->curr) || rt_task(rq->curr)) &&
+ (dl_task(rq->donor) || rt_task(rq->donor)) &&
(rq->curr->nr_cpus_allowed < 2 ||
- rq->curr->prio <= p->prio);
+ rq->donor->prio <= p->prio);
if (need_to_push)
push_rt_tasks(rq);
@@ -2485,7 +2472,7 @@ static void switched_to_rt(struct rq *rq, struct task_struct *p)
if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
rt_queue_push_tasks(rq);
#endif /* CONFIG_SMP */
- if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
+ if (p->prio < rq->donor->prio && cpu_online(cpu_of(rq)))
resched_curr(rq);
}
}
@@ -2500,7 +2487,7 @@ prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
if (!task_on_rq_queued(p))
return;
- if (task_current(rq, p)) {
+ if (task_current_donor(rq, p)) {
#ifdef CONFIG_SMP
/*
* If our priority decreases while running, we
@@ -2526,7 +2513,7 @@ prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
* greater than the current running task
* then reschedule.
*/
- if (p->prio < rq->curr->prio)
+ if (p->prio < rq->donor->prio)
resched_curr(rq);
}
}
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index c03b3d7b320e..76f5f53a645f 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -1148,7 +1148,10 @@ struct rq {
*/
unsigned int nr_uninterruptible;
- struct task_struct __rcu *curr;
+ union {
+ struct task_struct __rcu *donor; /* Scheduler context */
+ struct task_struct __rcu *curr; /* Execution context */
+ };
struct sched_dl_entity *dl_server;
struct task_struct *idle;
struct task_struct *stop;
@@ -1345,6 +1348,11 @@ DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
#define raw_rq() raw_cpu_ptr(&runqueues)
+static inline void rq_set_donor(struct rq *rq, struct task_struct *t)
+{
+ /* Do nothing */
+}
+
#ifdef CONFIG_SCHED_CORE
static inline struct cpumask *sched_group_span(struct sched_group *sg);
@@ -2086,34 +2094,6 @@ static inline const struct cpumask *task_user_cpus(struct task_struct *p)
#endif /* CONFIG_SMP */
-#include "stats.h"
-
-#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
-
-extern void __sched_core_account_forceidle(struct rq *rq);
-
-static inline void sched_core_account_forceidle(struct rq *rq)
-{
- if (schedstat_enabled())
- __sched_core_account_forceidle(rq);
-}
-
-extern void __sched_core_tick(struct rq *rq);
-
-static inline void sched_core_tick(struct rq *rq)
-{
- if (sched_core_enabled(rq) && schedstat_enabled())
- __sched_core_tick(rq);
-}
-
-#else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */
-
-static inline void sched_core_account_forceidle(struct rq *rq) { }
-
-static inline void sched_core_tick(struct rq *rq) { }
-
-#endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */
-
#ifdef CONFIG_CGROUP_SCHED
/*
@@ -2261,11 +2241,25 @@ static inline u64 global_rt_runtime(void)
return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
+/*
+ * Is p the current execution context?
+ */
static inline int task_current(struct rq *rq, struct task_struct *p)
{
return rq->curr == p;
}
+/*
+ * Is p the current scheduling context?
+ *
+ * Note that it might be the current execution context at the same time if
+ * rq->curr == rq->donor == p.
+ */
+static inline int task_current_donor(struct rq *rq, struct task_struct *p)
+{
+ return rq->donor == p;
+}
+
static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
{
#ifdef CONFIG_SMP
@@ -2452,7 +2446,7 @@ struct sched_class {
static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
{
- WARN_ON_ONCE(rq->curr != prev);
+ WARN_ON_ONCE(rq->donor != prev);
prev->sched_class->put_prev_task(rq, prev, NULL);
}
@@ -2616,7 +2610,7 @@ static inline cpumask_t *alloc_user_cpus_ptr(int node)
static inline struct task_struct *get_push_task(struct rq *rq)
{
- struct task_struct *p = rq->curr;
+ struct task_struct *p = rq->donor;
lockdep_assert_rq_held(rq);
@@ -2696,6 +2690,7 @@ extern void init_sched_rt_class(void);
extern void init_sched_fair_class(void);
extern void resched_curr(struct rq *rq);
+extern void resched_curr_lazy(struct rq *rq);
extern void resched_cpu(int cpu);
extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
@@ -3200,6 +3195,34 @@ extern void nohz_run_idle_balance(int cpu);
static inline void nohz_run_idle_balance(int cpu) { }
#endif
+#include "stats.h"
+
+#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
+
+extern void __sched_core_account_forceidle(struct rq *rq);
+
+static inline void sched_core_account_forceidle(struct rq *rq)
+{
+ if (schedstat_enabled())
+ __sched_core_account_forceidle(rq);
+}
+
+extern void __sched_core_tick(struct rq *rq);
+
+static inline void sched_core_tick(struct rq *rq)
+{
+ if (sched_core_enabled(rq) && schedstat_enabled())
+ __sched_core_tick(rq);
+}
+
+#else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */
+
+static inline void sched_core_account_forceidle(struct rq *rq) { }
+
+static inline void sched_core_tick(struct rq *rq) { }
+
+#endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */
+
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
struct irqtime {
@@ -3630,24 +3653,41 @@ static inline void mm_cid_put(struct mm_struct *mm)
__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
}
-static inline int __mm_cid_try_get(struct mm_struct *mm)
+static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm)
{
- struct cpumask *cpumask;
- int cid;
+ struct cpumask *cidmask = mm_cidmask(mm);
+ struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
+ int cid = __this_cpu_read(pcpu_cid->recent_cid);
- cpumask = mm_cidmask(mm);
+ /* Try to re-use recent cid. This improves cache locality. */
+ if (!mm_cid_is_unset(cid) && !cpumask_test_and_set_cpu(cid, cidmask))
+ return cid;
/*
+ * Expand cid allocation if the maximum number of concurrency
+ * IDs allocated (max_nr_cid) is below the number cpus allowed
+ * and number of threads. Expanding cid allocation as much as
+ * possible improves cache locality.
+ */
+ cid = atomic_read(&mm->max_nr_cid);
+ while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) {
+ if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1))
+ continue;
+ if (!cpumask_test_and_set_cpu(cid, cidmask))
+ return cid;
+ }
+ /*
+ * Find the first available concurrency id.
* Retry finding first zero bit if the mask is temporarily
* filled. This only happens during concurrent remote-clear
* which owns a cid without holding a rq lock.
*/
for (;;) {
- cid = cpumask_first_zero(cpumask);
- if (cid < nr_cpu_ids)
+ cid = cpumask_first_zero(cidmask);
+ if (cid < READ_ONCE(mm->nr_cpus_allowed))
break;
cpu_relax();
}
- if (cpumask_test_and_set_cpu(cid, cpumask))
+ if (cpumask_test_and_set_cpu(cid, cidmask))
return -1;
return cid;
@@ -3665,7 +3705,8 @@ static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
WRITE_ONCE(pcpu_cid->time, rq->clock);
}
-static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
+static inline int __mm_cid_get(struct rq *rq, struct task_struct *t,
+ struct mm_struct *mm)
{
int cid;
@@ -3675,13 +3716,13 @@ static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
* guarantee forward progress.
*/
if (!READ_ONCE(use_cid_lock)) {
- cid = __mm_cid_try_get(mm);
+ cid = __mm_cid_try_get(t, mm);
if (cid >= 0)
goto end;
raw_spin_lock(&cid_lock);
} else {
raw_spin_lock(&cid_lock);
- cid = __mm_cid_try_get(mm);
+ cid = __mm_cid_try_get(t, mm);
if (cid >= 0)
goto unlock;
}
@@ -3701,7 +3742,7 @@ static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
* all newcoming allocations observe the use_cid_lock flag set.
*/
do {
- cid = __mm_cid_try_get(mm);
+ cid = __mm_cid_try_get(t, mm);
cpu_relax();
} while (cid < 0);
/*
@@ -3718,7 +3759,8 @@ end:
return cid;
}
-static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
+static inline int mm_cid_get(struct rq *rq, struct task_struct *t,
+ struct mm_struct *mm)
{
struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
struct cpumask *cpumask;
@@ -3735,8 +3777,9 @@ static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
}
- cid = __mm_cid_get(rq, mm);
+ cid = __mm_cid_get(rq, t, mm);
__this_cpu_write(pcpu_cid->cid, cid);
+ __this_cpu_write(pcpu_cid->recent_cid, cid);
return cid;
}
@@ -3789,7 +3832,7 @@ static inline void switch_mm_cid(struct rq *rq,
prev->mm_cid = -1;
}
if (next->mm_cid_active)
- next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
+ next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm);
}
#else /* !CONFIG_SCHED_MM_CID: */
@@ -3802,6 +3845,28 @@ static inline void init_sched_mm_cid(struct task_struct *t) { }
extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
+#ifdef CONFIG_SMP
+static inline
+void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task)
+{
+ lockdep_assert_rq_held(src_rq);
+ lockdep_assert_rq_held(dst_rq);
+
+ deactivate_task(src_rq, task, 0);
+ set_task_cpu(task, dst_rq->cpu);
+ activate_task(dst_rq, task, 0);
+}
+
+static inline
+bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu)
+{
+ if (!task_on_cpu(rq, p) &&
+ cpumask_test_cpu(cpu, &p->cpus_mask))
+ return true;
+
+ return false;
+}
+#endif
#ifdef CONFIG_RT_MUTEXES
diff --git a/kernel/sched/stats.h b/kernel/sched/stats.h
index 767e098a3bd1..8ee0add5a48a 100644
--- a/kernel/sched/stats.h
+++ b/kernel/sched/stats.h
@@ -127,21 +127,25 @@ static inline void psi_account_irqtime(struct rq *rq, struct task_struct *curr,
* go through migration requeues. In this case, *sleeping* states need
* to be transferred.
*/
-static inline void psi_enqueue(struct task_struct *p, bool migrate)
+static inline void psi_enqueue(struct task_struct *p, int flags)
{
int clear = 0, set = 0;
if (static_branch_likely(&psi_disabled))
return;
+ /* Same runqueue, nothing changed for psi */
+ if (flags & ENQUEUE_RESTORE)
+ return;
+
if (p->se.sched_delayed) {
/* CPU migration of "sleeping" task */
- SCHED_WARN_ON(!migrate);
+ SCHED_WARN_ON(!(flags & ENQUEUE_MIGRATED));
if (p->in_memstall)
set |= TSK_MEMSTALL;
if (p->in_iowait)
set |= TSK_IOWAIT;
- } else if (migrate) {
+ } else if (flags & ENQUEUE_MIGRATED) {
/* CPU migration of runnable task */
set = TSK_RUNNING;
if (p->in_memstall)
@@ -158,17 +162,14 @@ static inline void psi_enqueue(struct task_struct *p, bool migrate)
psi_task_change(p, clear, set);
}
-static inline void psi_dequeue(struct task_struct *p, bool migrate)
+static inline void psi_dequeue(struct task_struct *p, int flags)
{
if (static_branch_likely(&psi_disabled))
return;
- /*
- * When migrating a task to another CPU, clear all psi
- * state. The enqueue callback above will work it out.
- */
- if (migrate)
- psi_task_change(p, p->psi_flags, 0);
+ /* Same runqueue, nothing changed for psi */
+ if (flags & DEQUEUE_SAVE)
+ return;
/*
* A voluntary sleep is a dequeue followed by a task switch. To
@@ -176,6 +177,14 @@ static inline void psi_dequeue(struct task_struct *p, bool migrate)
* TSK_RUNNING and TSK_IOWAIT for us when it moves TSK_ONCPU.
* Do nothing here.
*/
+ if (flags & DEQUEUE_SLEEP)
+ return;
+
+ /*
+ * When migrating a task to another CPU, clear all psi
+ * state. The enqueue callback above will work it out.
+ */
+ psi_task_change(p, p->psi_flags, 0);
}
static inline void psi_ttwu_dequeue(struct task_struct *p)
diff --git a/kernel/sched/syscalls.c b/kernel/sched/syscalls.c
index 24f9f90b6574..0d71fcbaf1e3 100644
--- a/kernel/sched/syscalls.c
+++ b/kernel/sched/syscalls.c
@@ -91,7 +91,7 @@ void set_user_nice(struct task_struct *p, long nice)
}
queued = task_on_rq_queued(p);
- running = task_current(rq, p);
+ running = task_current_donor(rq, p);
if (queued)
dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
if (running)
@@ -713,7 +713,7 @@ change:
dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
queued = task_on_rq_queued(p);
- running = task_current(rq, p);
+ running = task_current_donor(rq, p);
if (queued)
dequeue_task(rq, p, queue_flags);
if (running)
@@ -1081,45 +1081,6 @@ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
}
-/*
- * Copy the kernel size attribute structure (which might be larger
- * than what user-space knows about) to user-space.
- *
- * Note that all cases are valid: user-space buffer can be larger or
- * smaller than the kernel-space buffer. The usual case is that both
- * have the same size.
- */
-static int
-sched_attr_copy_to_user(struct sched_attr __user *uattr,
- struct sched_attr *kattr,
- unsigned int usize)
-{
- unsigned int ksize = sizeof(*kattr);
-
- if (!access_ok(uattr, usize))
- return -EFAULT;
-
- /*
- * sched_getattr() ABI forwards and backwards compatibility:
- *
- * If usize == ksize then we just copy everything to user-space and all is good.
- *
- * If usize < ksize then we only copy as much as user-space has space for,
- * this keeps ABI compatibility as well. We skip the rest.
- *
- * If usize > ksize then user-space is using a newer version of the ABI,
- * which part the kernel doesn't know about. Just ignore it - tooling can
- * detect the kernel's knowledge of attributes from the attr->size value
- * which is set to ksize in this case.
- */
- kattr->size = min(usize, ksize);
-
- if (copy_to_user(uattr, kattr, kattr->size))
- return -EFAULT;
-
- return 0;
-}
-
/**
* sys_sched_getattr - similar to sched_getparam, but with sched_attr
* @pid: the pid in question.
@@ -1164,7 +1125,8 @@ SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
#endif
}
- return sched_attr_copy_to_user(uattr, &kattr, usize);
+ kattr.size = min(usize, sizeof(kattr));
+ return copy_struct_to_user(uattr, usize, &kattr, sizeof(kattr), NULL);
}
#ifdef CONFIG_SMP
diff --git a/kernel/sched/wait_bit.c b/kernel/sched/wait_bit.c
index 134d7112ef71..b410b61cec95 100644
--- a/kernel/sched/wait_bit.c
+++ b/kernel/sched/wait_bit.c
@@ -9,7 +9,7 @@
static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
-wait_queue_head_t *bit_waitqueue(void *word, int bit)
+wait_queue_head_t *bit_waitqueue(unsigned long *word, int bit)
{
const int shift = BITS_PER_LONG == 32 ? 5 : 6;
unsigned long val = (unsigned long)word << shift | bit;
@@ -55,7 +55,7 @@ __wait_on_bit(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_
}
EXPORT_SYMBOL(__wait_on_bit);
-int __sched out_of_line_wait_on_bit(void *word, int bit,
+int __sched out_of_line_wait_on_bit(unsigned long *word, int bit,
wait_bit_action_f *action, unsigned mode)
{
struct wait_queue_head *wq_head = bit_waitqueue(word, bit);
@@ -66,7 +66,7 @@ int __sched out_of_line_wait_on_bit(void *word, int bit,
EXPORT_SYMBOL(out_of_line_wait_on_bit);
int __sched out_of_line_wait_on_bit_timeout(
- void *word, int bit, wait_bit_action_f *action,
+ unsigned long *word, int bit, wait_bit_action_f *action,
unsigned mode, unsigned long timeout)
{
struct wait_queue_head *wq_head = bit_waitqueue(word, bit);
@@ -108,7 +108,7 @@ __wait_on_bit_lock(struct wait_queue_head *wq_head, struct wait_bit_queue_entry
}
EXPORT_SYMBOL(__wait_on_bit_lock);
-int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
+int __sched out_of_line_wait_on_bit_lock(unsigned long *word, int bit,
wait_bit_action_f *action, unsigned mode)
{
struct wait_queue_head *wq_head = bit_waitqueue(word, bit);
@@ -118,7 +118,7 @@ int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
}
EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
-void __wake_up_bit(struct wait_queue_head *wq_head, void *word, int bit)
+void __wake_up_bit(struct wait_queue_head *wq_head, unsigned long *word, int bit)
{
struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
@@ -128,23 +128,31 @@ void __wake_up_bit(struct wait_queue_head *wq_head, void *word, int bit)
EXPORT_SYMBOL(__wake_up_bit);
/**
- * wake_up_bit - wake up a waiter on a bit
- * @word: the word being waited on, a kernel virtual address
- * @bit: the bit of the word being waited on
+ * wake_up_bit - wake up waiters on a bit
+ * @word: the address containing the bit being waited on
+ * @bit: the bit at that address being waited on
*
- * There is a standard hashed waitqueue table for generic use. This
- * is the part of the hash-table's accessor API that wakes up waiters
- * on a bit. For instance, if one were to have waiters on a bitflag,
- * one would call wake_up_bit() after clearing the bit.
+ * Wake up any process waiting in wait_on_bit() or similar for the
+ * given bit to be cleared.
*
- * In order for this to function properly, as it uses waitqueue_active()
- * internally, some kind of memory barrier must be done prior to calling
- * this. Typically, this will be smp_mb__after_atomic(), but in some
- * cases where bitflags are manipulated non-atomically under a lock, one
- * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
- * because spin_unlock() does not guarantee a memory barrier.
+ * The wake-up is sent to tasks in a waitqueue selected by hash from a
+ * shared pool. Only those tasks on that queue which have requested
+ * wake_up on this specific address and bit will be woken, and only if the
+ * bit is clear.
+ *
+ * In order for this to function properly there must be a full memory
+ * barrier after the bit is cleared and before this function is called.
+ * If the bit was cleared atomically, such as a by clear_bit() then
+ * smb_mb__after_atomic() can be used, othwewise smb_mb() is needed.
+ * If the bit was cleared with a fully-ordered operation, no further
+ * barrier is required.
+ *
+ * Normally the bit should be cleared by an operation with RELEASE
+ * semantics so that any changes to memory made before the bit is
+ * cleared are guaranteed to be visible after the matching wait_on_bit()
+ * completes.
*/
-void wake_up_bit(void *word, int bit)
+void wake_up_bit(unsigned long *word, int bit)
{
__wake_up_bit(bit_waitqueue(word, bit), word, bit);
}
@@ -188,6 +196,36 @@ void init_wait_var_entry(struct wait_bit_queue_entry *wbq_entry, void *var, int
}
EXPORT_SYMBOL(init_wait_var_entry);
+/**
+ * wake_up_var - wake up waiters on a variable (kernel address)
+ * @var: the address of the variable being waited on
+ *
+ * Wake up any process waiting in wait_var_event() or similar for the
+ * given variable to change. wait_var_event() can be waiting for an
+ * arbitrary condition to be true and associates that condition with an
+ * address. Calling wake_up_var() suggests that the condition has been
+ * made true, but does not strictly require the condtion to use the
+ * address given.
+ *
+ * The wake-up is sent to tasks in a waitqueue selected by hash from a
+ * shared pool. Only those tasks on that queue which have requested
+ * wake_up on this specific address will be woken.
+ *
+ * In order for this to function properly there must be a full memory
+ * barrier after the variable is updated (or more accurately, after the
+ * condition waited on has been made to be true) and before this function
+ * is called. If the variable was updated atomically, such as a by
+ * atomic_dec() then smb_mb__after_atomic() can be used. If the
+ * variable was updated by a fully ordered operation such as
+ * atomic_dec_and_test() then no extra barrier is required. Otherwise
+ * smb_mb() is needed.
+ *
+ * Normally the variable should be updated (the condition should be made
+ * to be true) by an operation with RELEASE semantics such as
+ * smp_store_release() so that any changes to memory made before the
+ * variable was updated are guaranteed to be visible after the matching
+ * wait_var_event() completes.
+ */
void wake_up_var(void *var)
{
__wake_up_bit(__var_waitqueue(var), var, -1);
@@ -228,20 +266,6 @@ __sched int bit_wait_timeout(struct wait_bit_key *word, int mode)
}
EXPORT_SYMBOL_GPL(bit_wait_timeout);
-__sched int bit_wait_io_timeout(struct wait_bit_key *word, int mode)
-{
- unsigned long now = READ_ONCE(jiffies);
-
- if (time_after_eq(now, word->timeout))
- return -EAGAIN;
- io_schedule_timeout(word->timeout - now);
- if (signal_pending_state(mode, current))
- return -EINTR;
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(bit_wait_io_timeout);
-
void __init wait_bit_init(void)
{
int i;
diff --git a/kernel/signal.c b/kernel/signal.c
index cbabb2d05e0a..98b65cb35830 100644
--- a/kernel/signal.c
+++ b/kernel/signal.c
@@ -59,6 +59,8 @@
#include <asm/cacheflush.h>
#include <asm/syscall.h> /* for syscall_get_* */
+#include "time/posix-timers.h"
+
/*
* SLAB caches for signal bits.
*/
@@ -396,16 +398,9 @@ void task_join_group_stop(struct task_struct *task)
task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
}
-/*
- * allocate a new signal queue record
- * - this may be called without locks if and only if t == current, otherwise an
- * appropriate lock must be held to stop the target task from exiting
- */
-static struct sigqueue *
-__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
- int override_rlimit, const unsigned int sigqueue_flags)
+static struct ucounts *sig_get_ucounts(struct task_struct *t, int sig,
+ int override_rlimit)
{
- struct sigqueue *q = NULL;
struct ucounts *ucounts;
long sigpending;
@@ -425,26 +420,53 @@ __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
if (!sigpending)
return NULL;
- if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
- q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
- } else {
+ if (unlikely(!override_rlimit && sigpending > task_rlimit(t, RLIMIT_SIGPENDING))) {
+ dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
print_dropped_signal(sig);
+ return NULL;
}
- if (unlikely(q == NULL)) {
+ return ucounts;
+}
+
+static void __sigqueue_init(struct sigqueue *q, struct ucounts *ucounts,
+ const unsigned int sigqueue_flags)
+{
+ INIT_LIST_HEAD(&q->list);
+ q->flags = sigqueue_flags;
+ q->ucounts = ucounts;
+}
+
+/*
+ * allocate a new signal queue record
+ * - this may be called without locks if and only if t == current, otherwise an
+ * appropriate lock must be held to stop the target task from exiting
+ */
+static struct sigqueue *sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
+ int override_rlimit)
+{
+ struct ucounts *ucounts = sig_get_ucounts(t, sig, override_rlimit);
+ struct sigqueue *q;
+
+ if (!ucounts)
+ return NULL;
+
+ q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
+ if (!q) {
dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
- } else {
- INIT_LIST_HEAD(&q->list);
- q->flags = sigqueue_flags;
- q->ucounts = ucounts;
+ return NULL;
}
+
+ __sigqueue_init(q, ucounts, 0);
return q;
}
static void __sigqueue_free(struct sigqueue *q)
{
- if (q->flags & SIGQUEUE_PREALLOC)
+ if (q->flags & SIGQUEUE_PREALLOC) {
+ posixtimer_sigqueue_putref(q);
return;
+ }
if (q->ucounts) {
dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
q->ucounts = NULL;
@@ -479,42 +501,6 @@ void flush_signals(struct task_struct *t)
}
EXPORT_SYMBOL(flush_signals);
-#ifdef CONFIG_POSIX_TIMERS
-static void __flush_itimer_signals(struct sigpending *pending)
-{
- sigset_t signal, retain;
- struct sigqueue *q, *n;
-
- signal = pending->signal;
- sigemptyset(&retain);
-
- list_for_each_entry_safe(q, n, &pending->list, list) {
- int sig = q->info.si_signo;
-
- if (likely(q->info.si_code != SI_TIMER)) {
- sigaddset(&retain, sig);
- } else {
- sigdelset(&signal, sig);
- list_del_init(&q->list);
- __sigqueue_free(q);
- }
- }
-
- sigorsets(&pending->signal, &signal, &retain);
-}
-
-void flush_itimer_signals(void)
-{
- struct task_struct *tsk = current;
- unsigned long flags;
-
- spin_lock_irqsave(&tsk->sighand->siglock, flags);
- __flush_itimer_signals(&tsk->pending);
- __flush_itimer_signals(&tsk->signal->shared_pending);
- spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
-}
-#endif
-
void ignore_signals(struct task_struct *t)
{
int i;
@@ -564,7 +550,7 @@ bool unhandled_signal(struct task_struct *tsk, int sig)
}
static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
- bool *resched_timer)
+ struct sigqueue **timer_sigq)
{
struct sigqueue *q, *first = NULL;
@@ -587,12 +573,17 @@ still_pending:
list_del_init(&first->list);
copy_siginfo(info, &first->info);
- *resched_timer =
- (first->flags & SIGQUEUE_PREALLOC) &&
- (info->si_code == SI_TIMER) &&
- (info->si_sys_private);
-
- __sigqueue_free(first);
+ /*
+ * posix-timer signals are preallocated and freed when the last
+ * reference count is dropped in posixtimer_deliver_signal() or
+ * immediately on timer deletion when the signal is not pending.
+ * Spare the extra round through __sigqueue_free() which is
+ * ignoring preallocated signals.
+ */
+ if (unlikely((first->flags & SIGQUEUE_PREALLOC) && (info->si_code == SI_TIMER)))
+ *timer_sigq = first;
+ else
+ __sigqueue_free(first);
} else {
/*
* Ok, it wasn't in the queue. This must be
@@ -609,12 +600,12 @@ still_pending:
}
static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
- kernel_siginfo_t *info, bool *resched_timer)
+ kernel_siginfo_t *info, struct sigqueue **timer_sigq)
{
int sig = next_signal(pending, mask);
if (sig)
- collect_signal(sig, pending, info, resched_timer);
+ collect_signal(sig, pending, info, timer_sigq);
return sig;
}
@@ -626,42 +617,22 @@ static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type)
{
struct task_struct *tsk = current;
- bool resched_timer = false;
+ struct sigqueue *timer_sigq;
int signr;
lockdep_assert_held(&tsk->sighand->siglock);
+again:
*type = PIDTYPE_PID;
- signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
+ timer_sigq = NULL;
+ signr = __dequeue_signal(&tsk->pending, mask, info, &timer_sigq);
if (!signr) {
*type = PIDTYPE_TGID;
signr = __dequeue_signal(&tsk->signal->shared_pending,
- mask, info, &resched_timer);
-#ifdef CONFIG_POSIX_TIMERS
- /*
- * itimer signal ?
- *
- * itimers are process shared and we restart periodic
- * itimers in the signal delivery path to prevent DoS
- * attacks in the high resolution timer case. This is
- * compliant with the old way of self-restarting
- * itimers, as the SIGALRM is a legacy signal and only
- * queued once. Changing the restart behaviour to
- * restart the timer in the signal dequeue path is
- * reducing the timer noise on heavy loaded !highres
- * systems too.
- */
- if (unlikely(signr == SIGALRM)) {
- struct hrtimer *tmr = &tsk->signal->real_timer;
-
- if (!hrtimer_is_queued(tmr) &&
- tsk->signal->it_real_incr != 0) {
- hrtimer_forward(tmr, tmr->base->get_time(),
- tsk->signal->it_real_incr);
- hrtimer_restart(tmr);
- }
- }
-#endif
+ mask, info, &timer_sigq);
+
+ if (unlikely(signr == SIGALRM))
+ posixtimer_rearm_itimer(tsk);
}
recalc_sigpending();
@@ -683,22 +654,12 @@ int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type)
*/
current->jobctl |= JOBCTL_STOP_DEQUEUED;
}
-#ifdef CONFIG_POSIX_TIMERS
- if (resched_timer) {
- /*
- * Release the siglock to ensure proper locking order
- * of timer locks outside of siglocks. Note, we leave
- * irqs disabled here, since the posix-timers code is
- * about to disable them again anyway.
- */
- spin_unlock(&tsk->sighand->siglock);
- posixtimer_rearm(info);
- spin_lock(&tsk->sighand->siglock);
- /* Don't expose the si_sys_private value to userspace */
- info->si_sys_private = 0;
+ if (IS_ENABLED(CONFIG_POSIX_TIMERS) && unlikely(timer_sigq)) {
+ if (!posixtimer_deliver_signal(info, timer_sigq))
+ goto again;
}
-#endif
+
return signr;
}
EXPORT_SYMBOL_GPL(dequeue_signal);
@@ -773,17 +734,24 @@ void signal_wake_up_state(struct task_struct *t, unsigned int state)
kick_process(t);
}
-/*
- * Remove signals in mask from the pending set and queue.
- * Returns 1 if any signals were found.
- *
- * All callers must be holding the siglock.
- */
-static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
+static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q);
+
+static void sigqueue_free_ignored(struct task_struct *tsk, struct sigqueue *q)
+{
+ if (likely(!(q->flags & SIGQUEUE_PREALLOC) || q->info.si_code != SI_TIMER))
+ __sigqueue_free(q);
+ else
+ posixtimer_sig_ignore(tsk, q);
+}
+
+/* Remove signals in mask from the pending set and queue. */
+static void flush_sigqueue_mask(struct task_struct *p, sigset_t *mask, struct sigpending *s)
{
struct sigqueue *q, *n;
sigset_t m;
+ lockdep_assert_held(&p->sighand->siglock);
+
sigandsets(&m, mask, &s->signal);
if (sigisemptyset(&m))
return;
@@ -792,7 +760,7 @@ static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
list_for_each_entry_safe(q, n, &s->list, list) {
if (sigismember(mask, q->info.si_signo)) {
list_del_init(&q->list);
- __sigqueue_free(q);
+ sigqueue_free_ignored(p, q);
}
}
}
@@ -917,18 +885,18 @@ static bool prepare_signal(int sig, struct task_struct *p, bool force)
* This is a stop signal. Remove SIGCONT from all queues.
*/
siginitset(&flush, sigmask(SIGCONT));
- flush_sigqueue_mask(&flush, &signal->shared_pending);
+ flush_sigqueue_mask(p, &flush, &signal->shared_pending);
for_each_thread(p, t)
- flush_sigqueue_mask(&flush, &t->pending);
+ flush_sigqueue_mask(p, &flush, &t->pending);
} else if (sig == SIGCONT) {
unsigned int why;
/*
* Remove all stop signals from all queues, wake all threads.
*/
siginitset(&flush, SIG_KERNEL_STOP_MASK);
- flush_sigqueue_mask(&flush, &signal->shared_pending);
+ flush_sigqueue_mask(p, &flush, &signal->shared_pending);
for_each_thread(p, t) {
- flush_sigqueue_mask(&flush, &t->pending);
+ flush_sigqueue_mask(p, &flush, &t->pending);
task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
if (likely(!(t->ptrace & PT_SEIZED))) {
t->jobctl &= ~JOBCTL_STOPPED;
@@ -1115,7 +1083,7 @@ static int __send_signal_locked(int sig, struct kernel_siginfo *info,
else
override_rlimit = 0;
- q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
+ q = sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
if (q) {
list_add_tail(&q->list, &pending->list);
@@ -1923,112 +1891,242 @@ int kill_pid(struct pid *pid, int sig, int priv)
}
EXPORT_SYMBOL(kill_pid);
+#ifdef CONFIG_POSIX_TIMERS
/*
- * These functions support sending signals using preallocated sigqueue
- * structures. This is needed "because realtime applications cannot
- * afford to lose notifications of asynchronous events, like timer
- * expirations or I/O completions". In the case of POSIX Timers
- * we allocate the sigqueue structure from the timer_create. If this
- * allocation fails we are able to report the failure to the application
- * with an EAGAIN error.
+ * These functions handle POSIX timer signals. POSIX timers use
+ * preallocated sigqueue structs for sending signals.
*/
-struct sigqueue *sigqueue_alloc(void)
+static void __flush_itimer_signals(struct sigpending *pending)
{
- return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
+ sigset_t signal, retain;
+ struct sigqueue *q, *n;
+
+ signal = pending->signal;
+ sigemptyset(&retain);
+
+ list_for_each_entry_safe(q, n, &pending->list, list) {
+ int sig = q->info.si_signo;
+
+ if (likely(q->info.si_code != SI_TIMER)) {
+ sigaddset(&retain, sig);
+ } else {
+ sigdelset(&signal, sig);
+ list_del_init(&q->list);
+ __sigqueue_free(q);
+ }
+ }
+
+ sigorsets(&pending->signal, &signal, &retain);
}
-void sigqueue_free(struct sigqueue *q)
+void flush_itimer_signals(void)
{
- spinlock_t *lock = &current->sighand->siglock;
- unsigned long flags;
+ struct task_struct *tsk = current;
- if (WARN_ON_ONCE(!(q->flags & SIGQUEUE_PREALLOC)))
- return;
- /*
- * We must hold ->siglock while testing q->list
- * to serialize with collect_signal() or with
- * __exit_signal()->flush_sigqueue().
- */
- spin_lock_irqsave(lock, flags);
- q->flags &= ~SIGQUEUE_PREALLOC;
- /*
- * If it is queued it will be freed when dequeued,
- * like the "regular" sigqueue.
- */
- if (!list_empty(&q->list))
- q = NULL;
- spin_unlock_irqrestore(lock, flags);
+ guard(spinlock_irqsave)(&tsk->sighand->siglock);
+ __flush_itimer_signals(&tsk->pending);
+ __flush_itimer_signals(&tsk->signal->shared_pending);
+}
- if (q)
- __sigqueue_free(q);
+bool posixtimer_init_sigqueue(struct sigqueue *q)
+{
+ struct ucounts *ucounts = sig_get_ucounts(current, -1, 0);
+
+ if (!ucounts)
+ return false;
+ clear_siginfo(&q->info);
+ __sigqueue_init(q, ucounts, SIGQUEUE_PREALLOC);
+ return true;
}
-int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
+static void posixtimer_queue_sigqueue(struct sigqueue *q, struct task_struct *t, enum pid_type type)
{
- int sig = q->info.si_signo;
struct sigpending *pending;
+ int sig = q->info.si_signo;
+
+ signalfd_notify(t, sig);
+ pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
+ list_add_tail(&q->list, &pending->list);
+ sigaddset(&pending->signal, sig);
+ complete_signal(sig, t, type);
+}
+
+/*
+ * This function is used by POSIX timers to deliver a timer signal.
+ * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
+ * set), the signal must be delivered to the specific thread (queues
+ * into t->pending).
+ *
+ * Where type is not PIDTYPE_PID, signals must be delivered to the
+ * process. In this case, prefer to deliver to current if it is in
+ * the same thread group as the target process, which avoids
+ * unnecessarily waking up a potentially idle task.
+ */
+static inline struct task_struct *posixtimer_get_target(struct k_itimer *tmr)
+{
+ struct task_struct *t = pid_task(tmr->it_pid, tmr->it_pid_type);
+
+ if (t && tmr->it_pid_type != PIDTYPE_PID && same_thread_group(t, current))
+ t = current;
+ return t;
+}
+
+void posixtimer_send_sigqueue(struct k_itimer *tmr)
+{
+ struct sigqueue *q = &tmr->sigq;
+ int sig = q->info.si_signo;
struct task_struct *t;
unsigned long flags;
- int ret, result;
+ int result;
- if (WARN_ON_ONCE(!(q->flags & SIGQUEUE_PREALLOC)))
- return 0;
- if (WARN_ON_ONCE(q->info.si_code != SI_TIMER))
- return 0;
+ guard(rcu)();
- ret = -1;
- rcu_read_lock();
+ t = posixtimer_get_target(tmr);
+ if (!t)
+ return;
+
+ if (!likely(lock_task_sighand(t, &flags)))
+ return;
/*
- * This function is used by POSIX timers to deliver a timer signal.
- * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
- * set), the signal must be delivered to the specific thread (queues
- * into t->pending).
- *
- * Where type is not PIDTYPE_PID, signals must be delivered to the
- * process. In this case, prefer to deliver to current if it is in
- * the same thread group as the target process, which avoids
- * unnecessarily waking up a potentially idle task.
+ * Update @tmr::sigqueue_seq for posix timer signals with sighand
+ * locked to prevent a race against dequeue_signal().
*/
- t = pid_task(pid, type);
- if (!t)
- goto ret;
- if (type != PIDTYPE_PID && same_thread_group(t, current))
- t = current;
- if (!likely(lock_task_sighand(t, &flags)))
- goto ret;
+ tmr->it_sigqueue_seq = tmr->it_signal_seq;
- ret = 1; /* the signal is ignored */
- result = TRACE_SIGNAL_IGNORED;
- if (!prepare_signal(sig, t, false))
+ /*
+ * Set the signal delivery status under sighand lock, so that the
+ * ignored signal handling can distinguish between a periodic and a
+ * non-periodic timer.
+ */
+ tmr->it_sig_periodic = tmr->it_status == POSIX_TIMER_REQUEUE_PENDING;
+
+ if (!prepare_signal(sig, t, false)) {
+ result = TRACE_SIGNAL_IGNORED;
+
+ if (!list_empty(&q->list)) {
+ /*
+ * If task group is exiting with the signal already pending,
+ * wait for __exit_signal() to do its job. Otherwise if
+ * ignored, it's not supposed to be queued. Try to survive.
+ */
+ WARN_ON_ONCE(!(t->signal->flags & SIGNAL_GROUP_EXIT));
+ goto out;
+ }
+
+ /* Periodic timers with SIG_IGN are queued on the ignored list */
+ if (tmr->it_sig_periodic) {
+ /*
+ * Already queued means the timer was rearmed after
+ * the previous expiry got it on the ignore list.
+ * Nothing to do for that case.
+ */
+ if (hlist_unhashed(&tmr->ignored_list)) {
+ /*
+ * Take a signal reference and queue it on
+ * the ignored list.
+ */
+ posixtimer_sigqueue_getref(q);
+ posixtimer_sig_ignore(t, q);
+ }
+ } else if (!hlist_unhashed(&tmr->ignored_list)) {
+ /*
+ * Covers the case where a timer was periodic and
+ * then the signal was ignored. Later it was rearmed
+ * as oneshot timer. The previous signal is invalid
+ * now, and this oneshot signal has to be dropped.
+ * Remove it from the ignored list and drop the
+ * reference count as the signal is not longer
+ * queued.
+ */
+ hlist_del_init(&tmr->ignored_list);
+ posixtimer_putref(tmr);
+ }
goto out;
+ }
+
+ /* This should never happen and leaks a reference count */
+ if (WARN_ON_ONCE(!hlist_unhashed(&tmr->ignored_list)))
+ hlist_del_init(&tmr->ignored_list);
- ret = 0;
if (unlikely(!list_empty(&q->list))) {
- /*
- * If an SI_TIMER entry is already queue just increment
- * the overrun count.
- */
- q->info.si_overrun++;
+ /* This holds a reference count already */
result = TRACE_SIGNAL_ALREADY_PENDING;
goto out;
}
- q->info.si_overrun = 0;
- signalfd_notify(t, sig);
- pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
- list_add_tail(&q->list, &pending->list);
- sigaddset(&pending->signal, sig);
- complete_signal(sig, t, type);
+ posixtimer_sigqueue_getref(q);
+ posixtimer_queue_sigqueue(q, t, tmr->it_pid_type);
result = TRACE_SIGNAL_DELIVERED;
out:
- trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
+ trace_signal_generate(sig, &q->info, t, tmr->it_pid_type != PIDTYPE_PID, result);
unlock_task_sighand(t, &flags);
-ret:
- rcu_read_unlock();
- return ret;
}
+static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q)
+{
+ struct k_itimer *tmr = container_of(q, struct k_itimer, sigq);
+
+ /*
+ * If the timer is marked deleted already or the signal originates
+ * from a non-periodic timer, then just drop the reference
+ * count. Otherwise queue it on the ignored list.
+ */
+ if (tmr->it_signal && tmr->it_sig_periodic)
+ hlist_add_head(&tmr->ignored_list, &tsk->signal->ignored_posix_timers);
+ else
+ posixtimer_putref(tmr);
+}
+
+static void posixtimer_sig_unignore(struct task_struct *tsk, int sig)
+{
+ struct hlist_head *head = &tsk->signal->ignored_posix_timers;
+ struct hlist_node *tmp;
+ struct k_itimer *tmr;
+
+ if (likely(hlist_empty(head)))
+ return;
+
+ /*
+ * Rearming a timer with sighand lock held is not possible due to
+ * lock ordering vs. tmr::it_lock. Just stick the sigqueue back and
+ * let the signal delivery path deal with it whether it needs to be
+ * rearmed or not. This cannot be decided here w/o dropping sighand
+ * lock and creating a loop retry horror show.
+ */
+ hlist_for_each_entry_safe(tmr, tmp , head, ignored_list) {
+ struct task_struct *target;
+
+ /*
+ * tmr::sigq.info.si_signo is immutable, so accessing it
+ * without holding tmr::it_lock is safe.
+ */
+ if (tmr->sigq.info.si_signo != sig)
+ continue;
+
+ hlist_del_init(&tmr->ignored_list);
+
+ /* This should never happen and leaks a reference count */
+ if (WARN_ON_ONCE(!list_empty(&tmr->sigq.list)))
+ continue;
+
+ /*
+ * Get the target for the signal. If target is a thread and
+ * has exited by now, drop the reference count.
+ */
+ guard(rcu)();
+ target = posixtimer_get_target(tmr);
+ if (target)
+ posixtimer_queue_sigqueue(&tmr->sigq, target, tmr->it_pid_type);
+ else
+ posixtimer_putref(tmr);
+ }
+}
+#else /* CONFIG_POSIX_TIMERS */
+static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q) { }
+static inline void posixtimer_sig_unignore(struct task_struct *tsk, int sig) { }
+#endif /* !CONFIG_POSIX_TIMERS */
+
void do_notify_pidfd(struct task_struct *task)
{
struct pid *pid = task_pid(task);
@@ -3909,7 +4007,6 @@ SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
siginfo_t __user *, info, unsigned int, flags)
{
int ret;
- struct fd f;
struct pid *pid;
kernel_siginfo_t kinfo;
enum pid_type type;
@@ -3922,20 +4019,17 @@ SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
return -EINVAL;
- f = fdget(pidfd);
- if (!fd_file(f))
+ CLASS(fd, f)(pidfd);
+ if (fd_empty(f))
return -EBADF;
/* Is this a pidfd? */
pid = pidfd_to_pid(fd_file(f));
- if (IS_ERR(pid)) {
- ret = PTR_ERR(pid);
- goto err;
- }
+ if (IS_ERR(pid))
+ return PTR_ERR(pid);
- ret = -EINVAL;
if (!access_pidfd_pidns(pid))
- goto err;
+ return -EINVAL;
switch (flags) {
case 0:
@@ -3959,28 +4053,23 @@ SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
if (info) {
ret = copy_siginfo_from_user_any(&kinfo, info);
if (unlikely(ret))
- goto err;
+ return ret;
- ret = -EINVAL;
if (unlikely(sig != kinfo.si_signo))
- goto err;
+ return -EINVAL;
/* Only allow sending arbitrary signals to yourself. */
- ret = -EPERM;
if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
(kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
- goto err;
+ return -EPERM;
} else {
prepare_kill_siginfo(sig, &kinfo, type);
}
if (type == PIDTYPE_PGID)
- ret = kill_pgrp_info(sig, &kinfo, pid);
+ return kill_pgrp_info(sig, &kinfo, pid);
else
- ret = kill_pid_info_type(sig, &kinfo, pid, type);
-err:
- fdput(f);
- return ret;
+ return kill_pid_info_type(sig, &kinfo, pid, type);
}
static int
@@ -4154,8 +4243,8 @@ void kernel_sigaction(int sig, __sighandler_t action)
sigemptyset(&mask);
sigaddset(&mask, sig);
- flush_sigqueue_mask(&mask, &current->signal->shared_pending);
- flush_sigqueue_mask(&mask, &current->pending);
+ flush_sigqueue_mask(current, &mask, &current->signal->shared_pending);
+ flush_sigqueue_mask(current, &mask, &current->pending);
recalc_sigpending();
}
spin_unlock_irq(&current->sighand->siglock);
@@ -4205,6 +4294,8 @@ int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
sigaction_compat_abi(act, oact);
if (act) {
+ bool was_ignored = k->sa.sa_handler == SIG_IGN;
+
sigdelsetmask(&act->sa.sa_mask,
sigmask(SIGKILL) | sigmask(SIGSTOP));
*k = *act;
@@ -4222,9 +4313,11 @@ int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
if (sig_handler_ignored(sig_handler(p, sig), sig)) {
sigemptyset(&mask);
sigaddset(&mask, sig);
- flush_sigqueue_mask(&mask, &p->signal->shared_pending);
+ flush_sigqueue_mask(p, &mask, &p->signal->shared_pending);
for_each_thread(p, t)
- flush_sigqueue_mask(&mask, &t->pending);
+ flush_sigqueue_mask(p, &mask, &t->pending);
+ } else if (was_ignored) {
+ posixtimer_sig_unignore(p, sig);
}
}
diff --git a/kernel/smp.c b/kernel/smp.c
index f25e20617b7e..27dc31a146a3 100644
--- a/kernel/smp.c
+++ b/kernel/smp.c
@@ -246,7 +246,7 @@ static bool csd_lock_wait_toolong(call_single_data_t *csd, u64 ts0, u64 *ts1, in
return true;
}
- ts2 = sched_clock();
+ ts2 = ktime_get_mono_fast_ns();
/* How long since we last checked for a stuck CSD lock.*/
ts_delta = ts2 - *ts1;
if (likely(ts_delta <= csd_lock_timeout_ns * (*nmessages + 1) *
@@ -321,7 +321,7 @@ static void __csd_lock_wait(call_single_data_t *csd)
int bug_id = 0;
u64 ts0, ts1;
- ts1 = ts0 = sched_clock();
+ ts1 = ts0 = ktime_get_mono_fast_ns();
for (;;) {
if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id, &nmessages))
break;
diff --git a/kernel/softirq.c b/kernel/softirq.c
index d082e7840f88..8b41bd13cc3d 100644
--- a/kernel/softirq.c
+++ b/kernel/softirq.c
@@ -624,6 +624,24 @@ static inline void tick_irq_exit(void)
#endif
}
+#ifdef CONFIG_IRQ_FORCED_THREADING
+DEFINE_PER_CPU(struct task_struct *, ktimerd);
+DEFINE_PER_CPU(unsigned long, pending_timer_softirq);
+
+static void wake_timersd(void)
+{
+ struct task_struct *tsk = __this_cpu_read(ktimerd);
+
+ if (tsk)
+ wake_up_process(tsk);
+}
+
+#else
+
+static inline void wake_timersd(void) { }
+
+#endif
+
static inline void __irq_exit_rcu(void)
{
#ifndef __ARCH_IRQ_EXIT_IRQS_DISABLED
@@ -636,6 +654,10 @@ static inline void __irq_exit_rcu(void)
if (!in_interrupt() && local_softirq_pending())
invoke_softirq();
+ if (IS_ENABLED(CONFIG_IRQ_FORCED_THREADING) && force_irqthreads() &&
+ local_timers_pending_force_th() && !(in_nmi() | in_hardirq()))
+ wake_timersd();
+
tick_irq_exit();
}
@@ -748,10 +770,8 @@ EXPORT_SYMBOL(__tasklet_hi_schedule);
static bool tasklet_clear_sched(struct tasklet_struct *t)
{
- if (test_and_clear_bit(TASKLET_STATE_SCHED, &t->state)) {
- wake_up_var(&t->state);
+ if (test_and_clear_wake_up_bit(TASKLET_STATE_SCHED, &t->state))
return true;
- }
WARN_ONCE(1, "tasklet SCHED state not set: %s %pS\n",
t->use_callback ? "callback" : "func",
@@ -871,8 +891,7 @@ void tasklet_kill(struct tasklet_struct *t)
if (in_interrupt())
pr_notice("Attempt to kill tasklet from interrupt\n");
- while (test_and_set_bit(TASKLET_STATE_SCHED, &t->state))
- wait_var_event(&t->state, !test_bit(TASKLET_STATE_SCHED, &t->state));
+ wait_on_bit_lock(&t->state, TASKLET_STATE_SCHED, TASK_UNINTERRUPTIBLE);
tasklet_unlock_wait(t);
tasklet_clear_sched(t);
@@ -882,16 +901,13 @@ EXPORT_SYMBOL(tasklet_kill);
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
void tasklet_unlock(struct tasklet_struct *t)
{
- smp_mb__before_atomic();
- clear_bit(TASKLET_STATE_RUN, &t->state);
- smp_mb__after_atomic();
- wake_up_var(&t->state);
+ clear_and_wake_up_bit(TASKLET_STATE_RUN, &t->state);
}
EXPORT_SYMBOL_GPL(tasklet_unlock);
void tasklet_unlock_wait(struct tasklet_struct *t)
{
- wait_var_event(&t->state, !test_bit(TASKLET_STATE_RUN, &t->state));
+ wait_on_bit(&t->state, TASKLET_STATE_RUN, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL_GPL(tasklet_unlock_wait);
#endif
@@ -971,12 +987,57 @@ static struct smp_hotplug_thread softirq_threads = {
.thread_comm = "ksoftirqd/%u",
};
+#ifdef CONFIG_IRQ_FORCED_THREADING
+static void ktimerd_setup(unsigned int cpu)
+{
+ /* Above SCHED_NORMAL to handle timers before regular tasks. */
+ sched_set_fifo_low(current);
+}
+
+static int ktimerd_should_run(unsigned int cpu)
+{
+ return local_timers_pending_force_th();
+}
+
+void raise_ktimers_thread(unsigned int nr)
+{
+ trace_softirq_raise(nr);
+ __this_cpu_or(pending_timer_softirq, BIT(nr));
+}
+
+static void run_ktimerd(unsigned int cpu)
+{
+ unsigned int timer_si;
+
+ ksoftirqd_run_begin();
+
+ timer_si = local_timers_pending_force_th();
+ __this_cpu_write(pending_timer_softirq, 0);
+ or_softirq_pending(timer_si);
+
+ __do_softirq();
+
+ ksoftirqd_run_end();
+}
+
+static struct smp_hotplug_thread timer_thread = {
+ .store = &ktimerd,
+ .setup = ktimerd_setup,
+ .thread_should_run = ktimerd_should_run,
+ .thread_fn = run_ktimerd,
+ .thread_comm = "ktimers/%u",
+};
+#endif
+
static __init int spawn_ksoftirqd(void)
{
cpuhp_setup_state_nocalls(CPUHP_SOFTIRQ_DEAD, "softirq:dead", NULL,
takeover_tasklets);
BUG_ON(smpboot_register_percpu_thread(&softirq_threads));
-
+#ifdef CONFIG_IRQ_FORCED_THREADING
+ if (force_irqthreads())
+ BUG_ON(smpboot_register_percpu_thread(&timer_thread));
+#endif
return 0;
}
early_initcall(spawn_ksoftirqd);
diff --git a/kernel/sys.c b/kernel/sys.c
index 4da31f28fda8..c4c701c6f0b4 100644
--- a/kernel/sys.c
+++ b/kernel/sys.c
@@ -1911,12 +1911,11 @@ SYSCALL_DEFINE1(umask, int, mask)
static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
{
- struct fd exe;
+ CLASS(fd, exe)(fd);
struct inode *inode;
int err;
- exe = fdget(fd);
- if (!fd_file(exe))
+ if (fd_empty(exe))
return -EBADF;
inode = file_inode(fd_file(exe));
@@ -1926,18 +1925,14 @@ static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
* sure that this one is executable as well, to avoid breaking an
* overall picture.
*/
- err = -EACCES;
if (!S_ISREG(inode->i_mode) || path_noexec(&fd_file(exe)->f_path))
- goto exit;
+ return -EACCES;
err = file_permission(fd_file(exe), MAY_EXEC);
if (err)
- goto exit;
+ return err;
- err = replace_mm_exe_file(mm, fd_file(exe));
-exit:
- fdput(exe);
- return err;
+ return replace_mm_exe_file(mm, fd_file(exe));
}
/*
@@ -2324,6 +2319,21 @@ int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
return -EINVAL;
}
+int __weak arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status)
+{
+ return -EINVAL;
+}
+
+int __weak arch_set_shadow_stack_status(struct task_struct *t, unsigned long status)
+{
+ return -EINVAL;
+}
+
+int __weak arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status)
+{
+ return -EINVAL;
+}
+
#define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
#ifdef CONFIG_ANON_VMA_NAME
@@ -2784,6 +2794,21 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
case PR_RISCV_SET_ICACHE_FLUSH_CTX:
error = RISCV_SET_ICACHE_FLUSH_CTX(arg2, arg3);
break;
+ case PR_GET_SHADOW_STACK_STATUS:
+ if (arg3 || arg4 || arg5)
+ return -EINVAL;
+ error = arch_get_shadow_stack_status(me, (unsigned long __user *) arg2);
+ break;
+ case PR_SET_SHADOW_STACK_STATUS:
+ if (arg3 || arg4 || arg5)
+ return -EINVAL;
+ error = arch_set_shadow_stack_status(me, arg2);
+ break;
+ case PR_LOCK_SHADOW_STACK_STATUS:
+ if (arg3 || arg4 || arg5)
+ return -EINVAL;
+ error = arch_lock_shadow_stack_status(me, arg2);
+ break;
default:
error = -EINVAL;
break;
diff --git a/kernel/sysctl.c b/kernel/sysctl.c
index 79e6cb1d5c48..5c9202cb8f59 100644
--- a/kernel/sysctl.c
+++ b/kernel/sysctl.c
@@ -1305,7 +1305,6 @@ int proc_dointvec_userhz_jiffies(const struct ctl_table *table, int write,
* @write: %TRUE if this is a write to the sysctl file
* @buffer: the user buffer
* @lenp: the size of the user buffer
- * @ppos: file position
* @ppos: the current position in the file
*
* Reads/writes up to table->maxlen/sizeof(unsigned int) integer
diff --git a/kernel/taskstats.c b/kernel/taskstats.c
index 0700f40c53ac..0cd680ccc7e5 100644
--- a/kernel/taskstats.c
+++ b/kernel/taskstats.c
@@ -411,15 +411,14 @@ static int cgroupstats_user_cmd(struct sk_buff *skb, struct genl_info *info)
struct nlattr *na;
size_t size;
u32 fd;
- struct fd f;
na = info->attrs[CGROUPSTATS_CMD_ATTR_FD];
if (!na)
return -EINVAL;
fd = nla_get_u32(info->attrs[CGROUPSTATS_CMD_ATTR_FD]);
- f = fdget(fd);
- if (!fd_file(f))
+ CLASS(fd, f)(fd);
+ if (fd_empty(f))
return 0;
size = nla_total_size(sizeof(struct cgroupstats));
@@ -427,14 +426,13 @@ static int cgroupstats_user_cmd(struct sk_buff *skb, struct genl_info *info)
rc = prepare_reply(info, CGROUPSTATS_CMD_NEW, &rep_skb,
size);
if (rc < 0)
- goto err;
+ return rc;
na = nla_reserve(rep_skb, CGROUPSTATS_TYPE_CGROUP_STATS,
sizeof(struct cgroupstats));
if (na == NULL) {
nlmsg_free(rep_skb);
- rc = -EMSGSIZE;
- goto err;
+ return -EMSGSIZE;
}
stats = nla_data(na);
@@ -443,14 +441,10 @@ static int cgroupstats_user_cmd(struct sk_buff *skb, struct genl_info *info)
rc = cgroupstats_build(stats, fd_file(f)->f_path.dentry);
if (rc < 0) {
nlmsg_free(rep_skb);
- goto err;
+ return rc;
}
- rc = send_reply(rep_skb, info);
-
-err:
- fdput(f);
- return rc;
+ return send_reply(rep_skb, info);
}
static int cmd_attr_register_cpumask(struct genl_info *info)
diff --git a/kernel/time/Kconfig b/kernel/time/Kconfig
index 8ebb6d5a106b..b0b97a60aaa6 100644
--- a/kernel/time/Kconfig
+++ b/kernel/time/Kconfig
@@ -17,11 +17,6 @@ config ARCH_CLOCKSOURCE_DATA
config ARCH_CLOCKSOURCE_INIT
bool
-# Clocksources require validation of the clocksource against the last
-# cycle update - x86/TSC misfeature
-config CLOCKSOURCE_VALIDATE_LAST_CYCLE
- bool
-
# Timekeeping vsyscall support
config GENERIC_TIME_VSYSCALL
bool
diff --git a/kernel/time/Makefile b/kernel/time/Makefile
index 4af2a264a160..fe0ae82124fe 100644
--- a/kernel/time/Makefile
+++ b/kernel/time/Makefile
@@ -1,5 +1,5 @@
# SPDX-License-Identifier: GPL-2.0
-obj-y += time.o timer.o hrtimer.o
+obj-y += time.o timer.o hrtimer.o sleep_timeout.o
obj-y += timekeeping.o ntp.o clocksource.o jiffies.o timer_list.o
obj-y += timeconv.o timecounter.o alarmtimer.o
diff --git a/kernel/time/alarmtimer.c b/kernel/time/alarmtimer.c
index 8bf888641694..0ddccdff119a 100644
--- a/kernel/time/alarmtimer.c
+++ b/kernel/time/alarmtimer.c
@@ -197,28 +197,15 @@ static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
{
struct alarm *alarm = container_of(timer, struct alarm, timer);
struct alarm_base *base = &alarm_bases[alarm->type];
- unsigned long flags;
- int ret = HRTIMER_NORESTART;
- int restart = ALARMTIMER_NORESTART;
- spin_lock_irqsave(&base->lock, flags);
- alarmtimer_dequeue(base, alarm);
- spin_unlock_irqrestore(&base->lock, flags);
+ scoped_guard (spinlock_irqsave, &base->lock)
+ alarmtimer_dequeue(base, alarm);
if (alarm->function)
- restart = alarm->function(alarm, base->get_ktime());
-
- spin_lock_irqsave(&base->lock, flags);
- if (restart != ALARMTIMER_NORESTART) {
- hrtimer_set_expires(&alarm->timer, alarm->node.expires);
- alarmtimer_enqueue(base, alarm);
- ret = HRTIMER_RESTART;
- }
- spin_unlock_irqrestore(&base->lock, flags);
+ alarm->function(alarm, base->get_ktime());
trace_alarmtimer_fired(alarm, base->get_ktime());
- return ret;
-
+ return HRTIMER_NORESTART;
}
ktime_t alarm_expires_remaining(const struct alarm *alarm)
@@ -334,10 +321,9 @@ static int alarmtimer_resume(struct device *dev)
static void
__alarm_init(struct alarm *alarm, enum alarmtimer_type type,
- enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
+ void (*function)(struct alarm *, ktime_t))
{
timerqueue_init(&alarm->node);
- alarm->timer.function = alarmtimer_fired;
alarm->function = function;
alarm->type = type;
alarm->state = ALARMTIMER_STATE_INACTIVE;
@@ -350,10 +336,10 @@ __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
* @function: callback that is run when the alarm fires
*/
void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
- enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
+ void (*function)(struct alarm *, ktime_t))
{
- hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
- HRTIMER_MODE_ABS);
+ hrtimer_setup(&alarm->timer, alarmtimer_fired, alarm_bases[type].base_clockid,
+ HRTIMER_MODE_ABS);
__alarm_init(alarm, type, function);
}
EXPORT_SYMBOL_GPL(alarm_init);
@@ -480,35 +466,11 @@ u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
}
EXPORT_SYMBOL_GPL(alarm_forward);
-static u64 __alarm_forward_now(struct alarm *alarm, ktime_t interval, bool throttle)
+u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
{
struct alarm_base *base = &alarm_bases[alarm->type];
- ktime_t now = base->get_ktime();
-
- if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && throttle) {
- /*
- * Same issue as with posix_timer_fn(). Timers which are
- * periodic but the signal is ignored can starve the system
- * with a very small interval. The real fix which was
- * promised in the context of posix_timer_fn() never
- * materialized, but someone should really work on it.
- *
- * To prevent DOS fake @now to be 1 jiffy out which keeps
- * the overrun accounting correct but creates an
- * inconsistency vs. timer_gettime(2).
- */
- ktime_t kj = NSEC_PER_SEC / HZ;
- if (interval < kj)
- now = ktime_add(now, kj);
- }
-
- return alarm_forward(alarm, now, interval);
-}
-
-u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
-{
- return __alarm_forward_now(alarm, interval, false);
+ return alarm_forward(alarm, base->get_ktime(), interval);
}
EXPORT_SYMBOL_GPL(alarm_forward_now);
@@ -567,30 +529,12 @@ static enum alarmtimer_type clock2alarm(clockid_t clockid)
*
* Return: whether the timer is to be restarted
*/
-static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
- ktime_t now)
+static void alarm_handle_timer(struct alarm *alarm, ktime_t now)
{
- struct k_itimer *ptr = container_of(alarm, struct k_itimer,
- it.alarm.alarmtimer);
- enum alarmtimer_restart result = ALARMTIMER_NORESTART;
- unsigned long flags;
+ struct k_itimer *ptr = container_of(alarm, struct k_itimer, it.alarm.alarmtimer);
- spin_lock_irqsave(&ptr->it_lock, flags);
-
- if (posix_timer_queue_signal(ptr) && ptr->it_interval) {
- /*
- * Handle ignored signals and rearm the timer. This will go
- * away once we handle ignored signals proper. Ensure that
- * small intervals cannot starve the system.
- */
- ptr->it_overrun += __alarm_forward_now(alarm, ptr->it_interval, true);
- ++ptr->it_requeue_pending;
- ptr->it_active = 1;
- result = ALARMTIMER_RESTART;
- }
- spin_unlock_irqrestore(&ptr->it_lock, flags);
-
- return result;
+ guard(spinlock_irqsave)(&ptr->it_lock);
+ posix_timer_queue_signal(ptr);
}
/**
@@ -751,18 +695,14 @@ static int alarm_timer_create(struct k_itimer *new_timer)
* @now: time at the timer expiration
*
* Wakes up the task that set the alarmtimer
- *
- * Return: ALARMTIMER_NORESTART
*/
-static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
- ktime_t now)
+static void alarmtimer_nsleep_wakeup(struct alarm *alarm, ktime_t now)
{
struct task_struct *task = alarm->data;
alarm->data = NULL;
if (task)
wake_up_process(task);
- return ALARMTIMER_NORESTART;
}
/**
@@ -814,10 +754,10 @@ static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
static void
alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
- enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
+ void (*function)(struct alarm *, ktime_t))
{
- hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
- HRTIMER_MODE_ABS);
+ hrtimer_setup_on_stack(&alarm->timer, alarmtimer_fired, alarm_bases[type].base_clockid,
+ HRTIMER_MODE_ABS);
__alarm_init(alarm, type, function);
}
diff --git a/kernel/time/clockevents.c b/kernel/time/clockevents.c
index 78c7bd64d0dd..f3e831f62906 100644
--- a/kernel/time/clockevents.c
+++ b/kernel/time/clockevents.c
@@ -337,13 +337,21 @@ int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
}
/*
- * Called after a notify add to make devices available which were
- * released from the notifier call.
+ * Called after a clockevent has been added which might
+ * have replaced a current regular or broadcast device. A
+ * released normal device might be a suitable replacement
+ * for the current broadcast device. Similarly a released
+ * broadcast device might be a suitable replacement for a
+ * normal device.
*/
static void clockevents_notify_released(void)
{
struct clock_event_device *dev;
+ /*
+ * Keep iterating as long as tick_check_new_device()
+ * replaces a device.
+ */
while (!list_empty(&clockevents_released)) {
dev = list_entry(clockevents_released.next,
struct clock_event_device, list);
@@ -610,39 +618,30 @@ void clockevents_resume(void)
#ifdef CONFIG_HOTPLUG_CPU
-# ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
/**
- * tick_offline_cpu - Take CPU out of the broadcast mechanism
+ * tick_offline_cpu - Shutdown all clock events related
+ * to this CPU and take it out of the
+ * broadcast mechanism.
* @cpu: The outgoing CPU
*
- * Called on the outgoing CPU after it took itself offline.
+ * Called by the dying CPU during teardown.
*/
void tick_offline_cpu(unsigned int cpu)
{
- raw_spin_lock(&clockevents_lock);
- tick_broadcast_offline(cpu);
- raw_spin_unlock(&clockevents_lock);
-}
-# endif
-
-/**
- * tick_cleanup_dead_cpu - Cleanup the tick and clockevents of a dead cpu
- * @cpu: The dead CPU
- */
-void tick_cleanup_dead_cpu(int cpu)
-{
struct clock_event_device *dev, *tmp;
- unsigned long flags;
- raw_spin_lock_irqsave(&clockevents_lock, flags);
+ raw_spin_lock(&clockevents_lock);
+ tick_broadcast_offline(cpu);
tick_shutdown(cpu);
+
/*
* Unregister the clock event devices which were
- * released from the users in the notify chain.
+ * released above.
*/
list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
list_del(&dev->list);
+
/*
* Now check whether the CPU has left unused per cpu devices
*/
@@ -654,7 +653,8 @@ void tick_cleanup_dead_cpu(int cpu)
list_del(&dev->list);
}
}
- raw_spin_unlock_irqrestore(&clockevents_lock, flags);
+
+ raw_spin_unlock(&clockevents_lock);
}
#endif
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c
index 23336eecb4f4..aab6472853fa 100644
--- a/kernel/time/clocksource.c
+++ b/kernel/time/clocksource.c
@@ -20,6 +20,8 @@
#include "tick-internal.h"
#include "timekeeping_internal.h"
+static void clocksource_enqueue(struct clocksource *cs);
+
static noinline u64 cycles_to_nsec_safe(struct clocksource *cs, u64 start, u64 end)
{
u64 delta = clocksource_delta(end, start, cs->mask);
@@ -171,7 +173,6 @@ static inline void clocksource_watchdog_unlock(unsigned long *flags)
}
static int clocksource_watchdog_kthread(void *data);
-static void __clocksource_change_rating(struct clocksource *cs, int rating);
static void clocksource_watchdog_work(struct work_struct *work)
{
@@ -191,6 +192,13 @@ static void clocksource_watchdog_work(struct work_struct *work)
kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
}
+static void clocksource_change_rating(struct clocksource *cs, int rating)
+{
+ list_del(&cs->list);
+ cs->rating = rating;
+ clocksource_enqueue(cs);
+}
+
static void __clocksource_unstable(struct clocksource *cs)
{
cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
@@ -697,7 +705,7 @@ static int __clocksource_watchdog_kthread(void)
list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
list_del_init(&cs->wd_list);
- __clocksource_change_rating(cs, 0);
+ clocksource_change_rating(cs, 0);
select = 1;
}
if (cs->flags & CLOCK_SOURCE_RESELECT) {
@@ -1255,34 +1263,6 @@ int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
}
EXPORT_SYMBOL_GPL(__clocksource_register_scale);
-static void __clocksource_change_rating(struct clocksource *cs, int rating)
-{
- list_del(&cs->list);
- cs->rating = rating;
- clocksource_enqueue(cs);
-}
-
-/**
- * clocksource_change_rating - Change the rating of a registered clocksource
- * @cs: clocksource to be changed
- * @rating: new rating
- */
-void clocksource_change_rating(struct clocksource *cs, int rating)
-{
- unsigned long flags;
-
- mutex_lock(&clocksource_mutex);
- clocksource_watchdog_lock(&flags);
- __clocksource_change_rating(cs, rating);
- clocksource_watchdog_unlock(&flags);
-
- clocksource_select();
- clocksource_select_watchdog(false);
- clocksource_suspend_select(false);
- mutex_unlock(&clocksource_mutex);
-}
-EXPORT_SYMBOL(clocksource_change_rating);
-
/*
* Unbind clocksource @cs. Called with clocksource_mutex held
*/
diff --git a/kernel/time/hrtimer.c b/kernel/time/hrtimer.c
index cddcd08ea827..80fe3749d2db 100644
--- a/kernel/time/hrtimer.c
+++ b/kernel/time/hrtimer.c
@@ -417,6 +417,11 @@ static inline void debug_hrtimer_init(struct hrtimer *timer)
debug_object_init(timer, &hrtimer_debug_descr);
}
+static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer)
+{
+ debug_object_init_on_stack(timer, &hrtimer_debug_descr);
+}
+
static inline void debug_hrtimer_activate(struct hrtimer *timer,
enum hrtimer_mode mode)
{
@@ -428,28 +433,6 @@ static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
debug_object_deactivate(timer, &hrtimer_debug_descr);
}
-static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
- enum hrtimer_mode mode);
-
-void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
- enum hrtimer_mode mode)
-{
- debug_object_init_on_stack(timer, &hrtimer_debug_descr);
- __hrtimer_init(timer, clock_id, mode);
-}
-EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
-
-static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
- clockid_t clock_id, enum hrtimer_mode mode);
-
-void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
- clockid_t clock_id, enum hrtimer_mode mode)
-{
- debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
- __hrtimer_init_sleeper(sl, clock_id, mode);
-}
-EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
-
void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
debug_object_free(timer, &hrtimer_debug_descr);
@@ -459,6 +442,7 @@ EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
+static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer,
enum hrtimer_mode mode) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
@@ -472,6 +456,13 @@ debug_init(struct hrtimer *timer, clockid_t clockid,
trace_hrtimer_init(timer, clockid, mode);
}
+static inline void debug_init_on_stack(struct hrtimer *timer, clockid_t clockid,
+ enum hrtimer_mode mode)
+{
+ debug_hrtimer_init_on_stack(timer);
+ trace_hrtimer_init(timer, clockid, mode);
+}
+
static inline void debug_activate(struct hrtimer *timer,
enum hrtimer_mode mode)
{
@@ -1544,6 +1535,11 @@ static inline int hrtimer_clockid_to_base(clockid_t clock_id)
return HRTIMER_BASE_MONOTONIC;
}
+static enum hrtimer_restart hrtimer_dummy_timeout(struct hrtimer *unused)
+{
+ return HRTIMER_NORESTART;
+}
+
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
enum hrtimer_mode mode)
{
@@ -1580,6 +1576,18 @@ static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
timerqueue_init(&timer->node);
}
+static void __hrtimer_setup(struct hrtimer *timer,
+ enum hrtimer_restart (*function)(struct hrtimer *),
+ clockid_t clock_id, enum hrtimer_mode mode)
+{
+ __hrtimer_init(timer, clock_id, mode);
+
+ if (WARN_ON_ONCE(!function))
+ timer->function = hrtimer_dummy_timeout;
+ else
+ timer->function = function;
+}
+
/**
* hrtimer_init - initialize a timer to the given clock
* @timer: the timer to be initialized
@@ -1600,6 +1608,46 @@ void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
}
EXPORT_SYMBOL_GPL(hrtimer_init);
+/**
+ * hrtimer_setup - initialize a timer to the given clock
+ * @timer: the timer to be initialized
+ * @function: the callback function
+ * @clock_id: the clock to be used
+ * @mode: The modes which are relevant for initialization:
+ * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
+ * HRTIMER_MODE_REL_SOFT
+ *
+ * The PINNED variants of the above can be handed in,
+ * but the PINNED bit is ignored as pinning happens
+ * when the hrtimer is started
+ */
+void hrtimer_setup(struct hrtimer *timer, enum hrtimer_restart (*function)(struct hrtimer *),
+ clockid_t clock_id, enum hrtimer_mode mode)
+{
+ debug_init(timer, clock_id, mode);
+ __hrtimer_setup(timer, function, clock_id, mode);
+}
+EXPORT_SYMBOL_GPL(hrtimer_setup);
+
+/**
+ * hrtimer_setup_on_stack - initialize a timer on stack memory
+ * @timer: The timer to be initialized
+ * @function: the callback function
+ * @clock_id: The clock to be used
+ * @mode: The timer mode
+ *
+ * Similar to hrtimer_setup(), except that this one must be used if struct hrtimer is in stack
+ * memory.
+ */
+void hrtimer_setup_on_stack(struct hrtimer *timer,
+ enum hrtimer_restart (*function)(struct hrtimer *),
+ clockid_t clock_id, enum hrtimer_mode mode)
+{
+ debug_init_on_stack(timer, clock_id, mode);
+ __hrtimer_setup(timer, function, clock_id, mode);
+}
+EXPORT_SYMBOL_GPL(hrtimer_setup_on_stack);
+
/*
* A timer is active, when it is enqueued into the rbtree or the
* callback function is running or it's in the state of being migrated
@@ -1811,7 +1859,7 @@ retry:
if (!ktime_before(now, cpu_base->softirq_expires_next)) {
cpu_base->softirq_expires_next = KTIME_MAX;
cpu_base->softirq_activated = 1;
- raise_softirq_irqoff(HRTIMER_SOFTIRQ);
+ raise_timer_softirq(HRTIMER_SOFTIRQ);
}
__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
@@ -1906,7 +1954,7 @@ void hrtimer_run_queues(void)
if (!ktime_before(now, cpu_base->softirq_expires_next)) {
cpu_base->softirq_expires_next = KTIME_MAX;
cpu_base->softirq_activated = 1;
- raise_softirq_irqoff(HRTIMER_SOFTIRQ);
+ raise_timer_softirq(HRTIMER_SOFTIRQ);
}
__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
@@ -1944,7 +1992,7 @@ void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
* Make the enqueue delivery mode check work on RT. If the sleeper
* was initialized for hard interrupt delivery, force the mode bit.
* This is a special case for hrtimer_sleepers because
- * hrtimer_init_sleeper() determines the delivery mode on RT so the
+ * __hrtimer_init_sleeper() determines the delivery mode on RT so the
* fiddling with this decision is avoided at the call sites.
*/
if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
@@ -1987,19 +2035,18 @@ static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
}
/**
- * hrtimer_init_sleeper - initialize sleeper to the given clock
+ * hrtimer_setup_sleeper_on_stack - initialize a sleeper in stack memory
* @sl: sleeper to be initialized
* @clock_id: the clock to be used
* @mode: timer mode abs/rel
*/
-void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
- enum hrtimer_mode mode)
+void hrtimer_setup_sleeper_on_stack(struct hrtimer_sleeper *sl,
+ clockid_t clock_id, enum hrtimer_mode mode)
{
- debug_init(&sl->timer, clock_id, mode);
+ debug_init_on_stack(&sl->timer, clock_id, mode);
__hrtimer_init_sleeper(sl, clock_id, mode);
-
}
-EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
+EXPORT_SYMBOL_GPL(hrtimer_setup_sleeper_on_stack);
int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
{
@@ -2060,8 +2107,7 @@ static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
struct hrtimer_sleeper t;
int ret;
- hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
- HRTIMER_MODE_ABS);
+ hrtimer_setup_sleeper_on_stack(&t, restart->nanosleep.clockid, HRTIMER_MODE_ABS);
hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
destroy_hrtimer_on_stack(&t.timer);
@@ -2075,7 +2121,7 @@ long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
struct hrtimer_sleeper t;
int ret = 0;
- hrtimer_init_sleeper_on_stack(&t, clockid, mode);
+ hrtimer_setup_sleeper_on_stack(&t, clockid, mode);
hrtimer_set_expires_range_ns(&t.timer, rqtp, current->timer_slack_ns);
ret = do_nanosleep(&t, mode);
if (ret != -ERESTART_RESTARTBLOCK)
@@ -2242,123 +2288,3 @@ void __init hrtimers_init(void)
hrtimers_prepare_cpu(smp_processor_id());
open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
}
-
-/**
- * schedule_hrtimeout_range_clock - sleep until timeout
- * @expires: timeout value (ktime_t)
- * @delta: slack in expires timeout (ktime_t)
- * @mode: timer mode
- * @clock_id: timer clock to be used
- */
-int __sched
-schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
- const enum hrtimer_mode mode, clockid_t clock_id)
-{
- struct hrtimer_sleeper t;
-
- /*
- * Optimize when a zero timeout value is given. It does not
- * matter whether this is an absolute or a relative time.
- */
- if (expires && *expires == 0) {
- __set_current_state(TASK_RUNNING);
- return 0;
- }
-
- /*
- * A NULL parameter means "infinite"
- */
- if (!expires) {
- schedule();
- return -EINTR;
- }
-
- hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
- hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
- hrtimer_sleeper_start_expires(&t, mode);
-
- if (likely(t.task))
- schedule();
-
- hrtimer_cancel(&t.timer);
- destroy_hrtimer_on_stack(&t.timer);
-
- __set_current_state(TASK_RUNNING);
-
- return !t.task ? 0 : -EINTR;
-}
-EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock);
-
-/**
- * schedule_hrtimeout_range - sleep until timeout
- * @expires: timeout value (ktime_t)
- * @delta: slack in expires timeout (ktime_t)
- * @mode: timer mode
- *
- * Make the current task sleep until the given expiry time has
- * elapsed. The routine will return immediately unless
- * the current task state has been set (see set_current_state()).
- *
- * The @delta argument gives the kernel the freedom to schedule the
- * actual wakeup to a time that is both power and performance friendly
- * for regular (non RT/DL) tasks.
- * The kernel give the normal best effort behavior for "@expires+@delta",
- * but may decide to fire the timer earlier, but no earlier than @expires.
- *
- * You can set the task state as follows -
- *
- * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
- * pass before the routine returns unless the current task is explicitly
- * woken up, (e.g. by wake_up_process()).
- *
- * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
- * delivered to the current task or the current task is explicitly woken
- * up.
- *
- * The current task state is guaranteed to be TASK_RUNNING when this
- * routine returns.
- *
- * Returns 0 when the timer has expired. If the task was woken before the
- * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
- * by an explicit wakeup, it returns -EINTR.
- */
-int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
- const enum hrtimer_mode mode)
-{
- return schedule_hrtimeout_range_clock(expires, delta, mode,
- CLOCK_MONOTONIC);
-}
-EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
-
-/**
- * schedule_hrtimeout - sleep until timeout
- * @expires: timeout value (ktime_t)
- * @mode: timer mode
- *
- * Make the current task sleep until the given expiry time has
- * elapsed. The routine will return immediately unless
- * the current task state has been set (see set_current_state()).
- *
- * You can set the task state as follows -
- *
- * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
- * pass before the routine returns unless the current task is explicitly
- * woken up, (e.g. by wake_up_process()).
- *
- * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
- * delivered to the current task or the current task is explicitly woken
- * up.
- *
- * The current task state is guaranteed to be TASK_RUNNING when this
- * routine returns.
- *
- * Returns 0 when the timer has expired. If the task was woken before the
- * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
- * by an explicit wakeup, it returns -EINTR.
- */
-int __sched schedule_hrtimeout(ktime_t *expires,
- const enum hrtimer_mode mode)
-{
- return schedule_hrtimeout_range(expires, 0, mode);
-}
-EXPORT_SYMBOL_GPL(schedule_hrtimeout);
diff --git a/kernel/time/itimer.c b/kernel/time/itimer.c
index 00629e658ca1..876d389b2e21 100644
--- a/kernel/time/itimer.c
+++ b/kernel/time/itimer.c
@@ -151,7 +151,27 @@ COMPAT_SYSCALL_DEFINE2(getitimer, int, which,
#endif
/*
- * The timer is automagically restarted, when interval != 0
+ * Invoked from dequeue_signal() when SIG_ALRM is delivered.
+ *
+ * Restart the ITIMER_REAL timer if it is armed as periodic timer. Doing
+ * this in the signal delivery path instead of self rearming prevents a DoS
+ * with small increments in the high reolution timer case and reduces timer
+ * noise in general.
+ */
+void posixtimer_rearm_itimer(struct task_struct *tsk)
+{
+ struct hrtimer *tmr = &tsk->signal->real_timer;
+
+ if (!hrtimer_is_queued(tmr) && tsk->signal->it_real_incr != 0) {
+ hrtimer_forward(tmr, tmr->base->get_time(),
+ tsk->signal->it_real_incr);
+ hrtimer_restart(tmr);
+ }
+}
+
+/*
+ * Interval timers are restarted in the signal delivery path. See
+ * posixtimer_rearm_itimer().
*/
enum hrtimer_restart it_real_fn(struct hrtimer *timer)
{
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c
index 802b336f4b8c..b550ebe0f03b 100644
--- a/kernel/time/ntp.c
+++ b/kernel/time/ntp.c
@@ -22,22 +22,79 @@
#include "ntp_internal.h"
#include "timekeeping_internal.h"
-
-/*
- * NTP timekeeping variables:
+/**
+ * struct ntp_data - Structure holding all NTP related state
+ * @tick_usec: USER_HZ period in microseconds
+ * @tick_length: Adjusted tick length
+ * @tick_length_base: Base value for @tick_length
+ * @time_state: State of the clock synchronization
+ * @time_status: Clock status bits
+ * @time_offset: Time adjustment in nanoseconds
+ * @time_constant: PLL time constant
+ * @time_maxerror: Maximum error in microseconds holding the NTP sync distance
+ * (NTP dispersion + delay / 2)
+ * @time_esterror: Estimated error in microseconds holding NTP dispersion
+ * @time_freq: Frequency offset scaled nsecs/secs
+ * @time_reftime: Time at last adjustment in seconds
+ * @time_adjust: Adjustment value
+ * @ntp_tick_adj: Constant boot-param configurable NTP tick adjustment (upscaled)
+ * @ntp_next_leap_sec: Second value of the next pending leapsecond, or TIME64_MAX if no leap
*
- * Note: All of the NTP state is protected by the timekeeping locks.
+ * @pps_valid: PPS signal watchdog counter
+ * @pps_tf: PPS phase median filter
+ * @pps_jitter: PPS current jitter in nanoseconds
+ * @pps_fbase: PPS beginning of the last freq interval
+ * @pps_shift: PPS current interval duration in seconds (shift value)
+ * @pps_intcnt: PPS interval counter
+ * @pps_freq: PPS frequency offset in scaled ns/s
+ * @pps_stabil: PPS current stability in scaled ns/s
+ * @pps_calcnt: PPS monitor: calibration intervals
+ * @pps_jitcnt: PPS monitor: jitter limit exceeded
+ * @pps_stbcnt: PPS monitor: stability limit exceeded
+ * @pps_errcnt: PPS monitor: calibration errors
+ *
+ * Protected by the timekeeping locks.
*/
+struct ntp_data {
+ unsigned long tick_usec;
+ u64 tick_length;
+ u64 tick_length_base;
+ int time_state;
+ int time_status;
+ s64 time_offset;
+ long time_constant;
+ long time_maxerror;
+ long time_esterror;
+ s64 time_freq;
+ time64_t time_reftime;
+ long time_adjust;
+ s64 ntp_tick_adj;
+ time64_t ntp_next_leap_sec;
+#ifdef CONFIG_NTP_PPS
+ int pps_valid;
+ long pps_tf[3];
+ long pps_jitter;
+ struct timespec64 pps_fbase;
+ int pps_shift;
+ int pps_intcnt;
+ s64 pps_freq;
+ long pps_stabil;
+ long pps_calcnt;
+ long pps_jitcnt;
+ long pps_stbcnt;
+ long pps_errcnt;
+#endif
+};
-
-/* USER_HZ period (usecs): */
-unsigned long tick_usec = USER_TICK_USEC;
-
-/* SHIFTED_HZ period (nsecs): */
-unsigned long tick_nsec;
-
-static u64 tick_length;
-static u64 tick_length_base;
+static struct ntp_data tk_ntp_data = {
+ .tick_usec = USER_TICK_USEC,
+ .time_state = TIME_OK,
+ .time_status = STA_UNSYNC,
+ .time_constant = 2,
+ .time_maxerror = NTP_PHASE_LIMIT,
+ .time_esterror = NTP_PHASE_LIMIT,
+ .ntp_next_leap_sec = TIME64_MAX,
+};
#define SECS_PER_DAY 86400
#define MAX_TICKADJ 500LL /* usecs */
@@ -45,46 +102,6 @@ static u64 tick_length_base;
(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
#define MAX_TAI_OFFSET 100000
-/*
- * phase-lock loop variables
- */
-
-/*
- * clock synchronization status
- *
- * (TIME_ERROR prevents overwriting the CMOS clock)
- */
-static int time_state = TIME_OK;
-
-/* clock status bits: */
-static int time_status = STA_UNSYNC;
-
-/* time adjustment (nsecs): */
-static s64 time_offset;
-
-/* pll time constant: */
-static long time_constant = 2;
-
-/* maximum error (usecs): */
-static long time_maxerror = NTP_PHASE_LIMIT;
-
-/* estimated error (usecs): */
-static long time_esterror = NTP_PHASE_LIMIT;
-
-/* frequency offset (scaled nsecs/secs): */
-static s64 time_freq;
-
-/* time at last adjustment (secs): */
-static time64_t time_reftime;
-
-static long time_adjust;
-
-/* constant (boot-param configurable) NTP tick adjustment (upscaled) */
-static s64 ntp_tick_adj;
-
-/* second value of the next pending leapsecond, or TIME64_MAX if no leap */
-static time64_t ntp_next_leap_sec = TIME64_MAX;
-
#ifdef CONFIG_NTP_PPS
/*
@@ -101,128 +118,115 @@ static time64_t ntp_next_leap_sec = TIME64_MAX;
intervals to decrease it */
#define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
-static int pps_valid; /* signal watchdog counter */
-static long pps_tf[3]; /* phase median filter */
-static long pps_jitter; /* current jitter (ns) */
-static struct timespec64 pps_fbase; /* beginning of the last freq interval */
-static int pps_shift; /* current interval duration (s) (shift) */
-static int pps_intcnt; /* interval counter */
-static s64 pps_freq; /* frequency offset (scaled ns/s) */
-static long pps_stabil; /* current stability (scaled ns/s) */
-
/*
- * PPS signal quality monitors
- */
-static long pps_calcnt; /* calibration intervals */
-static long pps_jitcnt; /* jitter limit exceeded */
-static long pps_stbcnt; /* stability limit exceeded */
-static long pps_errcnt; /* calibration errors */
-
-
-/* PPS kernel consumer compensates the whole phase error immediately.
+ * PPS kernel consumer compensates the whole phase error immediately.
* Otherwise, reduce the offset by a fixed factor times the time constant.
*/
-static inline s64 ntp_offset_chunk(s64 offset)
+static inline s64 ntp_offset_chunk(struct ntp_data *ntpdata, s64 offset)
{
- if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
+ if (ntpdata->time_status & STA_PPSTIME && ntpdata->time_status & STA_PPSSIGNAL)
return offset;
else
- return shift_right(offset, SHIFT_PLL + time_constant);
+ return shift_right(offset, SHIFT_PLL + ntpdata->time_constant);
}
-static inline void pps_reset_freq_interval(void)
+static inline void pps_reset_freq_interval(struct ntp_data *ntpdata)
{
- /* the PPS calibration interval may end
- surprisingly early */
- pps_shift = PPS_INTMIN;
- pps_intcnt = 0;
+ /* The PPS calibration interval may end surprisingly early */
+ ntpdata->pps_shift = PPS_INTMIN;
+ ntpdata->pps_intcnt = 0;
}
/**
* pps_clear - Clears the PPS state variables
+ * @ntpdata: Pointer to ntp data
*/
-static inline void pps_clear(void)
+static inline void pps_clear(struct ntp_data *ntpdata)
{
- pps_reset_freq_interval();
- pps_tf[0] = 0;
- pps_tf[1] = 0;
- pps_tf[2] = 0;
- pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
- pps_freq = 0;
+ pps_reset_freq_interval(ntpdata);
+ ntpdata->pps_tf[0] = 0;
+ ntpdata->pps_tf[1] = 0;
+ ntpdata->pps_tf[2] = 0;
+ ntpdata->pps_fbase.tv_sec = ntpdata->pps_fbase.tv_nsec = 0;
+ ntpdata->pps_freq = 0;
}
-/* Decrease pps_valid to indicate that another second has passed since
- * the last PPS signal. When it reaches 0, indicate that PPS signal is
- * missing.
+/*
+ * Decrease pps_valid to indicate that another second has passed since the
+ * last PPS signal. When it reaches 0, indicate that PPS signal is missing.
*/
-static inline void pps_dec_valid(void)
+static inline void pps_dec_valid(struct ntp_data *ntpdata)
{
- if (pps_valid > 0)
- pps_valid--;
- else {
- time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
- STA_PPSWANDER | STA_PPSERROR);
- pps_clear();
+ if (ntpdata->pps_valid > 0) {
+ ntpdata->pps_valid--;
+ } else {
+ ntpdata->time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
+ STA_PPSWANDER | STA_PPSERROR);
+ pps_clear(ntpdata);
}
}
-static inline void pps_set_freq(s64 freq)
+static inline void pps_set_freq(struct ntp_data *ntpdata)
{
- pps_freq = freq;
+ ntpdata->pps_freq = ntpdata->time_freq;
}
-static inline int is_error_status(int status)
+static inline bool is_error_status(int status)
{
return (status & (STA_UNSYNC|STA_CLOCKERR))
- /* PPS signal lost when either PPS time or
- * PPS frequency synchronization requested
+ /*
+ * PPS signal lost when either PPS time or PPS frequency
+ * synchronization requested
*/
|| ((status & (STA_PPSFREQ|STA_PPSTIME))
&& !(status & STA_PPSSIGNAL))
- /* PPS jitter exceeded when
- * PPS time synchronization requested */
+ /*
+ * PPS jitter exceeded when PPS time synchronization
+ * requested
+ */
|| ((status & (STA_PPSTIME|STA_PPSJITTER))
== (STA_PPSTIME|STA_PPSJITTER))
- /* PPS wander exceeded or calibration error when
- * PPS frequency synchronization requested
+ /*
+ * PPS wander exceeded or calibration error when PPS
+ * frequency synchronization requested
*/
|| ((status & STA_PPSFREQ)
&& (status & (STA_PPSWANDER|STA_PPSERROR)));
}
-static inline void pps_fill_timex(struct __kernel_timex *txc)
+static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc)
{
- txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
+ txc->ppsfreq = shift_right((ntpdata->pps_freq >> PPM_SCALE_INV_SHIFT) *
PPM_SCALE_INV, NTP_SCALE_SHIFT);
- txc->jitter = pps_jitter;
- if (!(time_status & STA_NANO))
- txc->jitter = pps_jitter / NSEC_PER_USEC;
- txc->shift = pps_shift;
- txc->stabil = pps_stabil;
- txc->jitcnt = pps_jitcnt;
- txc->calcnt = pps_calcnt;
- txc->errcnt = pps_errcnt;
- txc->stbcnt = pps_stbcnt;
+ txc->jitter = ntpdata->pps_jitter;
+ if (!(ntpdata->time_status & STA_NANO))
+ txc->jitter = ntpdata->pps_jitter / NSEC_PER_USEC;
+ txc->shift = ntpdata->pps_shift;
+ txc->stabil = ntpdata->pps_stabil;
+ txc->jitcnt = ntpdata->pps_jitcnt;
+ txc->calcnt = ntpdata->pps_calcnt;
+ txc->errcnt = ntpdata->pps_errcnt;
+ txc->stbcnt = ntpdata->pps_stbcnt;
}
#else /* !CONFIG_NTP_PPS */
-static inline s64 ntp_offset_chunk(s64 offset)
+static inline s64 ntp_offset_chunk(struct ntp_data *ntpdata, s64 offset)
{
- return shift_right(offset, SHIFT_PLL + time_constant);
+ return shift_right(offset, SHIFT_PLL + ntpdata->time_constant);
}
-static inline void pps_reset_freq_interval(void) {}
-static inline void pps_clear(void) {}
-static inline void pps_dec_valid(void) {}
-static inline void pps_set_freq(s64 freq) {}
+static inline void pps_reset_freq_interval(struct ntp_data *ntpdata) {}
+static inline void pps_clear(struct ntp_data *ntpdata) {}
+static inline void pps_dec_valid(struct ntp_data *ntpdata) {}
+static inline void pps_set_freq(struct ntp_data *ntpdata) {}
-static inline int is_error_status(int status)
+static inline bool is_error_status(int status)
{
return status & (STA_UNSYNC|STA_CLOCKERR);
}
-static inline void pps_fill_timex(struct __kernel_timex *txc)
+static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc)
{
/* PPS is not implemented, so these are zero */
txc->ppsfreq = 0;
@@ -237,138 +241,123 @@ static inline void pps_fill_timex(struct __kernel_timex *txc)
#endif /* CONFIG_NTP_PPS */
-
-/**
- * ntp_synced - Returns 1 if the NTP status is not UNSYNC
- *
- */
-static inline int ntp_synced(void)
-{
- return !(time_status & STA_UNSYNC);
-}
-
-
/*
- * NTP methods:
+ * Update tick_length and tick_length_base, based on tick_usec, ntp_tick_adj and
+ * time_freq:
*/
-
-/*
- * Update (tick_length, tick_length_base, tick_nsec), based
- * on (tick_usec, ntp_tick_adj, time_freq):
- */
-static void ntp_update_frequency(void)
+static void ntp_update_frequency(struct ntp_data *ntpdata)
{
- u64 second_length;
- u64 new_base;
+ u64 second_length, new_base, tick_usec = (u64)ntpdata->tick_usec;
- second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
- << NTP_SCALE_SHIFT;
+ second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) << NTP_SCALE_SHIFT;
- second_length += ntp_tick_adj;
- second_length += time_freq;
+ second_length += ntpdata->ntp_tick_adj;
+ second_length += ntpdata->time_freq;
- tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
/*
- * Don't wait for the next second_overflow, apply
- * the change to the tick length immediately:
+ * Don't wait for the next second_overflow, apply the change to the
+ * tick length immediately:
*/
- tick_length += new_base - tick_length_base;
- tick_length_base = new_base;
+ ntpdata->tick_length += new_base - ntpdata->tick_length_base;
+ ntpdata->tick_length_base = new_base;
}
-static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
+static inline s64 ntp_update_offset_fll(struct ntp_data *ntpdata, s64 offset64, long secs)
{
- time_status &= ~STA_MODE;
+ ntpdata->time_status &= ~STA_MODE;
if (secs < MINSEC)
return 0;
- if (!(time_status & STA_FLL) && (secs <= MAXSEC))
+ if (!(ntpdata->time_status & STA_FLL) && (secs <= MAXSEC))
return 0;
- time_status |= STA_MODE;
+ ntpdata->time_status |= STA_MODE;
return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
}
-static void ntp_update_offset(long offset)
+static void ntp_update_offset(struct ntp_data *ntpdata, long offset)
{
- s64 freq_adj;
- s64 offset64;
- long secs;
+ s64 freq_adj, offset64;
+ long secs, real_secs;
- if (!(time_status & STA_PLL))
+ if (!(ntpdata->time_status & STA_PLL))
return;
- if (!(time_status & STA_NANO)) {
+ if (!(ntpdata->time_status & STA_NANO)) {
/* Make sure the multiplication below won't overflow */
offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
offset *= NSEC_PER_USEC;
}
- /*
- * Scale the phase adjustment and
- * clamp to the operating range.
- */
+ /* Scale the phase adjustment and clamp to the operating range. */
offset = clamp(offset, -MAXPHASE, MAXPHASE);
/*
* Select how the frequency is to be controlled
* and in which mode (PLL or FLL).
*/
- secs = (long)(__ktime_get_real_seconds() - time_reftime);
- if (unlikely(time_status & STA_FREQHOLD))
+ real_secs = __ktime_get_real_seconds();
+ secs = (long)(real_secs - ntpdata->time_reftime);
+ if (unlikely(ntpdata->time_status & STA_FREQHOLD))
secs = 0;
- time_reftime = __ktime_get_real_seconds();
+ ntpdata->time_reftime = real_secs;
offset64 = offset;
- freq_adj = ntp_update_offset_fll(offset64, secs);
+ freq_adj = ntp_update_offset_fll(ntpdata, offset64, secs);
/*
* Clamp update interval to reduce PLL gain with low
* sampling rate (e.g. intermittent network connection)
* to avoid instability.
*/
- if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
- secs = 1 << (SHIFT_PLL + 1 + time_constant);
+ if (unlikely(secs > 1 << (SHIFT_PLL + 1 + ntpdata->time_constant)))
+ secs = 1 << (SHIFT_PLL + 1 + ntpdata->time_constant);
freq_adj += (offset64 * secs) <<
- (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
+ (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + ntpdata->time_constant));
- freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
+ freq_adj = min(freq_adj + ntpdata->time_freq, MAXFREQ_SCALED);
- time_freq = max(freq_adj, -MAXFREQ_SCALED);
+ ntpdata->time_freq = max(freq_adj, -MAXFREQ_SCALED);
- time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
+ ntpdata->time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
}
-/**
- * ntp_clear - Clears the NTP state variables
- */
-void ntp_clear(void)
+static void __ntp_clear(struct ntp_data *ntpdata)
{
- time_adjust = 0; /* stop active adjtime() */
- time_status |= STA_UNSYNC;
- time_maxerror = NTP_PHASE_LIMIT;
- time_esterror = NTP_PHASE_LIMIT;
+ /* Stop active adjtime() */
+ ntpdata->time_adjust = 0;
+ ntpdata->time_status |= STA_UNSYNC;
+ ntpdata->time_maxerror = NTP_PHASE_LIMIT;
+ ntpdata->time_esterror = NTP_PHASE_LIMIT;
- ntp_update_frequency();
+ ntp_update_frequency(ntpdata);
- tick_length = tick_length_base;
- time_offset = 0;
+ ntpdata->tick_length = ntpdata->tick_length_base;
+ ntpdata->time_offset = 0;
- ntp_next_leap_sec = TIME64_MAX;
+ ntpdata->ntp_next_leap_sec = TIME64_MAX;
/* Clear PPS state variables */
- pps_clear();
+ pps_clear(ntpdata);
+}
+
+/**
+ * ntp_clear - Clears the NTP state variables
+ */
+void ntp_clear(void)
+{
+ __ntp_clear(&tk_ntp_data);
}
u64 ntp_tick_length(void)
{
- return tick_length;
+ return tk_ntp_data.tick_length;
}
/**
@@ -379,16 +368,17 @@ u64 ntp_tick_length(void)
*/
ktime_t ntp_get_next_leap(void)
{
+ struct ntp_data *ntpdata = &tk_ntp_data;
ktime_t ret;
- if ((time_state == TIME_INS) && (time_status & STA_INS))
- return ktime_set(ntp_next_leap_sec, 0);
+ if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS))
+ return ktime_set(ntpdata->ntp_next_leap_sec, 0);
ret = KTIME_MAX;
return ret;
}
/*
- * this routine handles the overflow of the microsecond field
+ * This routine handles the overflow of the microsecond field
*
* The tricky bits of code to handle the accurate clock support
* were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
@@ -399,6 +389,7 @@ ktime_t ntp_get_next_leap(void)
*/
int second_overflow(time64_t secs)
{
+ struct ntp_data *ntpdata = &tk_ntp_data;
s64 delta;
int leap = 0;
s32 rem;
@@ -408,87 +399,84 @@ int second_overflow(time64_t secs)
* day, the system clock is set back one second; if in leap-delete
* state, the system clock is set ahead one second.
*/
- switch (time_state) {
+ switch (ntpdata->time_state) {
case TIME_OK:
- if (time_status & STA_INS) {
- time_state = TIME_INS;
+ if (ntpdata->time_status & STA_INS) {
+ ntpdata->time_state = TIME_INS;
div_s64_rem(secs, SECS_PER_DAY, &rem);
- ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
- } else if (time_status & STA_DEL) {
- time_state = TIME_DEL;
+ ntpdata->ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
+ } else if (ntpdata->time_status & STA_DEL) {
+ ntpdata->time_state = TIME_DEL;
div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
- ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
+ ntpdata->ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
}
break;
case TIME_INS:
- if (!(time_status & STA_INS)) {
- ntp_next_leap_sec = TIME64_MAX;
- time_state = TIME_OK;
- } else if (secs == ntp_next_leap_sec) {
+ if (!(ntpdata->time_status & STA_INS)) {
+ ntpdata->ntp_next_leap_sec = TIME64_MAX;
+ ntpdata->time_state = TIME_OK;
+ } else if (secs == ntpdata->ntp_next_leap_sec) {
leap = -1;
- time_state = TIME_OOP;
- printk(KERN_NOTICE
- "Clock: inserting leap second 23:59:60 UTC\n");
+ ntpdata->time_state = TIME_OOP;
+ pr_notice("Clock: inserting leap second 23:59:60 UTC\n");
}
break;
case TIME_DEL:
- if (!(time_status & STA_DEL)) {
- ntp_next_leap_sec = TIME64_MAX;
- time_state = TIME_OK;
- } else if (secs == ntp_next_leap_sec) {
+ if (!(ntpdata->time_status & STA_DEL)) {
+ ntpdata->ntp_next_leap_sec = TIME64_MAX;
+ ntpdata->time_state = TIME_OK;
+ } else if (secs == ntpdata->ntp_next_leap_sec) {
leap = 1;
- ntp_next_leap_sec = TIME64_MAX;
- time_state = TIME_WAIT;
- printk(KERN_NOTICE
- "Clock: deleting leap second 23:59:59 UTC\n");
+ ntpdata->ntp_next_leap_sec = TIME64_MAX;
+ ntpdata->time_state = TIME_WAIT;
+ pr_notice("Clock: deleting leap second 23:59:59 UTC\n");
}
break;
case TIME_OOP:
- ntp_next_leap_sec = TIME64_MAX;
- time_state = TIME_WAIT;
+ ntpdata->ntp_next_leap_sec = TIME64_MAX;
+ ntpdata->time_state = TIME_WAIT;
break;
case TIME_WAIT:
- if (!(time_status & (STA_INS | STA_DEL)))
- time_state = TIME_OK;
+ if (!(ntpdata->time_status & (STA_INS | STA_DEL)))
+ ntpdata->time_state = TIME_OK;
break;
}
-
/* Bump the maxerror field */
- time_maxerror += MAXFREQ / NSEC_PER_USEC;
- if (time_maxerror > NTP_PHASE_LIMIT) {
- time_maxerror = NTP_PHASE_LIMIT;
- time_status |= STA_UNSYNC;
+ ntpdata->time_maxerror += MAXFREQ / NSEC_PER_USEC;
+ if (ntpdata->time_maxerror > NTP_PHASE_LIMIT) {
+ ntpdata->time_maxerror = NTP_PHASE_LIMIT;
+ ntpdata->time_status |= STA_UNSYNC;
}
/* Compute the phase adjustment for the next second */
- tick_length = tick_length_base;
+ ntpdata->tick_length = ntpdata->tick_length_base;
- delta = ntp_offset_chunk(time_offset);
- time_offset -= delta;
- tick_length += delta;
+ delta = ntp_offset_chunk(ntpdata, ntpdata->time_offset);
+ ntpdata->time_offset -= delta;
+ ntpdata->tick_length += delta;
/* Check PPS signal */
- pps_dec_valid();
+ pps_dec_valid(ntpdata);
- if (!time_adjust)
+ if (!ntpdata->time_adjust)
goto out;
- if (time_adjust > MAX_TICKADJ) {
- time_adjust -= MAX_TICKADJ;
- tick_length += MAX_TICKADJ_SCALED;
+ if (ntpdata->time_adjust > MAX_TICKADJ) {
+ ntpdata->time_adjust -= MAX_TICKADJ;
+ ntpdata->tick_length += MAX_TICKADJ_SCALED;
goto out;
}
- if (time_adjust < -MAX_TICKADJ) {
- time_adjust += MAX_TICKADJ;
- tick_length -= MAX_TICKADJ_SCALED;
+ if (ntpdata->time_adjust < -MAX_TICKADJ) {
+ ntpdata->time_adjust += MAX_TICKADJ;
+ ntpdata->tick_length -= MAX_TICKADJ_SCALED;
goto out;
}
- tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
- << NTP_SCALE_SHIFT;
- time_adjust = 0;
+ ntpdata->tick_length += (s64)(ntpdata->time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
+ << NTP_SCALE_SHIFT;
+ ntpdata->time_adjust = 0;
out:
return leap;
@@ -611,6 +599,15 @@ static inline int update_rtc(struct timespec64 *to_set, unsigned long *offset_ns
}
#endif
+/**
+ * ntp_synced - Tells whether the NTP status is not UNSYNC
+ * Returns: true if not UNSYNC, false otherwise
+ */
+static inline bool ntp_synced(void)
+{
+ return !(tk_ntp_data.time_status & STA_UNSYNC);
+}
+
/*
* If we have an externally synchronized Linux clock, then update RTC clock
* accordingly every ~11 minutes. Generally RTCs can only store second
@@ -691,162 +688,156 @@ static inline void __init ntp_init_cmos_sync(void) { }
/*
* Propagate a new txc->status value into the NTP state:
*/
-static inline void process_adj_status(const struct __kernel_timex *txc)
+static inline void process_adj_status(struct ntp_data *ntpdata, const struct __kernel_timex *txc)
{
- if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
- time_state = TIME_OK;
- time_status = STA_UNSYNC;
- ntp_next_leap_sec = TIME64_MAX;
- /* restart PPS frequency calibration */
- pps_reset_freq_interval();
+ if ((ntpdata->time_status & STA_PLL) && !(txc->status & STA_PLL)) {
+ ntpdata->time_state = TIME_OK;
+ ntpdata->time_status = STA_UNSYNC;
+ ntpdata->ntp_next_leap_sec = TIME64_MAX;
+ /* Restart PPS frequency calibration */
+ pps_reset_freq_interval(ntpdata);
}
/*
* If we turn on PLL adjustments then reset the
* reference time to current time.
*/
- if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
- time_reftime = __ktime_get_real_seconds();
+ if (!(ntpdata->time_status & STA_PLL) && (txc->status & STA_PLL))
+ ntpdata->time_reftime = __ktime_get_real_seconds();
/* only set allowed bits */
- time_status &= STA_RONLY;
- time_status |= txc->status & ~STA_RONLY;
+ ntpdata->time_status &= STA_RONLY;
+ ntpdata->time_status |= txc->status & ~STA_RONLY;
}
-
-static inline void process_adjtimex_modes(const struct __kernel_timex *txc,
+static inline void process_adjtimex_modes(struct ntp_data *ntpdata, const struct __kernel_timex *txc,
s32 *time_tai)
{
if (txc->modes & ADJ_STATUS)
- process_adj_status(txc);
+ process_adj_status(ntpdata, txc);
if (txc->modes & ADJ_NANO)
- time_status |= STA_NANO;
+ ntpdata->time_status |= STA_NANO;
if (txc->modes & ADJ_MICRO)
- time_status &= ~STA_NANO;
+ ntpdata->time_status &= ~STA_NANO;
if (txc->modes & ADJ_FREQUENCY) {
- time_freq = txc->freq * PPM_SCALE;
- time_freq = min(time_freq, MAXFREQ_SCALED);
- time_freq = max(time_freq, -MAXFREQ_SCALED);
- /* update pps_freq */
- pps_set_freq(time_freq);
+ ntpdata->time_freq = txc->freq * PPM_SCALE;
+ ntpdata->time_freq = min(ntpdata->time_freq, MAXFREQ_SCALED);
+ ntpdata->time_freq = max(ntpdata->time_freq, -MAXFREQ_SCALED);
+ /* Update pps_freq */
+ pps_set_freq(ntpdata);
}
if (txc->modes & ADJ_MAXERROR)
- time_maxerror = clamp(txc->maxerror, 0, NTP_PHASE_LIMIT);
+ ntpdata->time_maxerror = clamp(txc->maxerror, 0, NTP_PHASE_LIMIT);
if (txc->modes & ADJ_ESTERROR)
- time_esterror = clamp(txc->esterror, 0, NTP_PHASE_LIMIT);
+ ntpdata->time_esterror = clamp(txc->esterror, 0, NTP_PHASE_LIMIT);
if (txc->modes & ADJ_TIMECONST) {
- time_constant = clamp(txc->constant, 0, MAXTC);
- if (!(time_status & STA_NANO))
- time_constant += 4;
- time_constant = clamp(time_constant, 0, MAXTC);
+ ntpdata->time_constant = clamp(txc->constant, 0, MAXTC);
+ if (!(ntpdata->time_status & STA_NANO))
+ ntpdata->time_constant += 4;
+ ntpdata->time_constant = clamp(ntpdata->time_constant, 0, MAXTC);
}
- if (txc->modes & ADJ_TAI &&
- txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
+ if (txc->modes & ADJ_TAI && txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
*time_tai = txc->constant;
if (txc->modes & ADJ_OFFSET)
- ntp_update_offset(txc->offset);
+ ntp_update_offset(ntpdata, txc->offset);
if (txc->modes & ADJ_TICK)
- tick_usec = txc->tick;
+ ntpdata->tick_usec = txc->tick;
if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
- ntp_update_frequency();
+ ntp_update_frequency(ntpdata);
}
-
/*
- * adjtimex mainly allows reading (and writing, if superuser) of
+ * adjtimex() mainly allows reading (and writing, if superuser) of
* kernel time-keeping variables. used by xntpd.
*/
int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
s32 *time_tai, struct audit_ntp_data *ad)
{
+ struct ntp_data *ntpdata = &tk_ntp_data;
int result;
if (txc->modes & ADJ_ADJTIME) {
- long save_adjust = time_adjust;
+ long save_adjust = ntpdata->time_adjust;
if (!(txc->modes & ADJ_OFFSET_READONLY)) {
/* adjtime() is independent from ntp_adjtime() */
- time_adjust = txc->offset;
- ntp_update_frequency();
+ ntpdata->time_adjust = txc->offset;
+ ntp_update_frequency(ntpdata);
audit_ntp_set_old(ad, AUDIT_NTP_ADJUST, save_adjust);
- audit_ntp_set_new(ad, AUDIT_NTP_ADJUST, time_adjust);
+ audit_ntp_set_new(ad, AUDIT_NTP_ADJUST, ntpdata->time_adjust);
}
txc->offset = save_adjust;
} else {
/* If there are input parameters, then process them: */
if (txc->modes) {
- audit_ntp_set_old(ad, AUDIT_NTP_OFFSET, time_offset);
- audit_ntp_set_old(ad, AUDIT_NTP_FREQ, time_freq);
- audit_ntp_set_old(ad, AUDIT_NTP_STATUS, time_status);
+ audit_ntp_set_old(ad, AUDIT_NTP_OFFSET, ntpdata->time_offset);
+ audit_ntp_set_old(ad, AUDIT_NTP_FREQ, ntpdata->time_freq);
+ audit_ntp_set_old(ad, AUDIT_NTP_STATUS, ntpdata->time_status);
audit_ntp_set_old(ad, AUDIT_NTP_TAI, *time_tai);
- audit_ntp_set_old(ad, AUDIT_NTP_TICK, tick_usec);
+ audit_ntp_set_old(ad, AUDIT_NTP_TICK, ntpdata->tick_usec);
- process_adjtimex_modes(txc, time_tai);
+ process_adjtimex_modes(ntpdata, txc, time_tai);
- audit_ntp_set_new(ad, AUDIT_NTP_OFFSET, time_offset);
- audit_ntp_set_new(ad, AUDIT_NTP_FREQ, time_freq);
- audit_ntp_set_new(ad, AUDIT_NTP_STATUS, time_status);
+ audit_ntp_set_new(ad, AUDIT_NTP_OFFSET, ntpdata->time_offset);
+ audit_ntp_set_new(ad, AUDIT_NTP_FREQ, ntpdata->time_freq);
+ audit_ntp_set_new(ad, AUDIT_NTP_STATUS, ntpdata->time_status);
audit_ntp_set_new(ad, AUDIT_NTP_TAI, *time_tai);
- audit_ntp_set_new(ad, AUDIT_NTP_TICK, tick_usec);
+ audit_ntp_set_new(ad, AUDIT_NTP_TICK, ntpdata->tick_usec);
}
- txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
- NTP_SCALE_SHIFT);
- if (!(time_status & STA_NANO))
+ txc->offset = shift_right(ntpdata->time_offset * NTP_INTERVAL_FREQ, NTP_SCALE_SHIFT);
+ if (!(ntpdata->time_status & STA_NANO))
txc->offset = (u32)txc->offset / NSEC_PER_USEC;
}
- result = time_state; /* mostly `TIME_OK' */
- /* check for errors */
- if (is_error_status(time_status))
+ result = ntpdata->time_state;
+ if (is_error_status(ntpdata->time_status))
result = TIME_ERROR;
- txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
+ txc->freq = shift_right((ntpdata->time_freq >> PPM_SCALE_INV_SHIFT) *
PPM_SCALE_INV, NTP_SCALE_SHIFT);
- txc->maxerror = time_maxerror;
- txc->esterror = time_esterror;
- txc->status = time_status;
- txc->constant = time_constant;
+ txc->maxerror = ntpdata->time_maxerror;
+ txc->esterror = ntpdata->time_esterror;
+ txc->status = ntpdata->time_status;
+ txc->constant = ntpdata->time_constant;
txc->precision = 1;
txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
- txc->tick = tick_usec;
+ txc->tick = ntpdata->tick_usec;
txc->tai = *time_tai;
- /* fill PPS status fields */
- pps_fill_timex(txc);
+ /* Fill PPS status fields */
+ pps_fill_timex(ntpdata, txc);
txc->time.tv_sec = ts->tv_sec;
txc->time.tv_usec = ts->tv_nsec;
- if (!(time_status & STA_NANO))
+ if (!(ntpdata->time_status & STA_NANO))
txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
/* Handle leapsec adjustments */
- if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
- if ((time_state == TIME_INS) && (time_status & STA_INS)) {
+ if (unlikely(ts->tv_sec >= ntpdata->ntp_next_leap_sec)) {
+ if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS)) {
result = TIME_OOP;
txc->tai++;
txc->time.tv_sec--;
}
- if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
+ if ((ntpdata->time_state == TIME_DEL) && (ntpdata->time_status & STA_DEL)) {
result = TIME_WAIT;
txc->tai--;
txc->time.tv_sec++;
}
- if ((time_state == TIME_OOP) &&
- (ts->tv_sec == ntp_next_leap_sec)) {
+ if ((ntpdata->time_state == TIME_OOP) && (ts->tv_sec == ntpdata->ntp_next_leap_sec))
result = TIME_WAIT;
- }
}
return result;
@@ -854,17 +845,21 @@ int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
#ifdef CONFIG_NTP_PPS
-/* actually struct pps_normtime is good old struct timespec, but it is
+/*
+ * struct pps_normtime is basically a struct timespec, but it is
* semantically different (and it is the reason why it was invented):
* pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
- * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
+ * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC)
+ */
struct pps_normtime {
s64 sec; /* seconds */
long nsec; /* nanoseconds */
};
-/* normalize the timestamp so that nsec is in the
- ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
+/*
+ * Normalize the timestamp so that nsec is in the
+ * [ -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval
+ */
static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
{
struct pps_normtime norm = {
@@ -880,54 +875,57 @@ static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
return norm;
}
-/* get current phase correction and jitter */
-static inline long pps_phase_filter_get(long *jitter)
+/* Get current phase correction and jitter */
+static inline long pps_phase_filter_get(struct ntp_data *ntpdata, long *jitter)
{
- *jitter = pps_tf[0] - pps_tf[1];
+ *jitter = ntpdata->pps_tf[0] - ntpdata->pps_tf[1];
if (*jitter < 0)
*jitter = -*jitter;
/* TODO: test various filters */
- return pps_tf[0];
+ return ntpdata->pps_tf[0];
}
-/* add the sample to the phase filter */
-static inline void pps_phase_filter_add(long err)
+/* Add the sample to the phase filter */
+static inline void pps_phase_filter_add(struct ntp_data *ntpdata, long err)
{
- pps_tf[2] = pps_tf[1];
- pps_tf[1] = pps_tf[0];
- pps_tf[0] = err;
+ ntpdata->pps_tf[2] = ntpdata->pps_tf[1];
+ ntpdata->pps_tf[1] = ntpdata->pps_tf[0];
+ ntpdata->pps_tf[0] = err;
}
-/* decrease frequency calibration interval length.
- * It is halved after four consecutive unstable intervals.
+/*
+ * Decrease frequency calibration interval length. It is halved after four
+ * consecutive unstable intervals.
*/
-static inline void pps_dec_freq_interval(void)
+static inline void pps_dec_freq_interval(struct ntp_data *ntpdata)
{
- if (--pps_intcnt <= -PPS_INTCOUNT) {
- pps_intcnt = -PPS_INTCOUNT;
- if (pps_shift > PPS_INTMIN) {
- pps_shift--;
- pps_intcnt = 0;
+ if (--ntpdata->pps_intcnt <= -PPS_INTCOUNT) {
+ ntpdata->pps_intcnt = -PPS_INTCOUNT;
+ if (ntpdata->pps_shift > PPS_INTMIN) {
+ ntpdata->pps_shift--;
+ ntpdata->pps_intcnt = 0;
}
}
}
-/* increase frequency calibration interval length.
- * It is doubled after four consecutive stable intervals.
+/*
+ * Increase frequency calibration interval length. It is doubled after
+ * four consecutive stable intervals.
*/
-static inline void pps_inc_freq_interval(void)
+static inline void pps_inc_freq_interval(struct ntp_data *ntpdata)
{
- if (++pps_intcnt >= PPS_INTCOUNT) {
- pps_intcnt = PPS_INTCOUNT;
- if (pps_shift < PPS_INTMAX) {
- pps_shift++;
- pps_intcnt = 0;
+ if (++ntpdata->pps_intcnt >= PPS_INTCOUNT) {
+ ntpdata->pps_intcnt = PPS_INTCOUNT;
+ if (ntpdata->pps_shift < PPS_INTMAX) {
+ ntpdata->pps_shift++;
+ ntpdata->pps_intcnt = 0;
}
}
}
-/* update clock frequency based on MONOTONIC_RAW clock PPS signal
+/*
+ * Update clock frequency based on MONOTONIC_RAW clock PPS signal
* timestamps
*
* At the end of the calibration interval the difference between the
@@ -936,90 +934,88 @@ static inline void pps_inc_freq_interval(void)
* too long, the data are discarded.
* Returns the difference between old and new frequency values.
*/
-static long hardpps_update_freq(struct pps_normtime freq_norm)
+static long hardpps_update_freq(struct ntp_data *ntpdata, struct pps_normtime freq_norm)
{
long delta, delta_mod;
s64 ftemp;
- /* check if the frequency interval was too long */
- if (freq_norm.sec > (2 << pps_shift)) {
- time_status |= STA_PPSERROR;
- pps_errcnt++;
- pps_dec_freq_interval();
- printk_deferred(KERN_ERR
- "hardpps: PPSERROR: interval too long - %lld s\n",
- freq_norm.sec);
+ /* Check if the frequency interval was too long */
+ if (freq_norm.sec > (2 << ntpdata->pps_shift)) {
+ ntpdata->time_status |= STA_PPSERROR;
+ ntpdata->pps_errcnt++;
+ pps_dec_freq_interval(ntpdata);
+ printk_deferred(KERN_ERR "hardpps: PPSERROR: interval too long - %lld s\n",
+ freq_norm.sec);
return 0;
}
- /* here the raw frequency offset and wander (stability) is
- * calculated. If the wander is less than the wander threshold
- * the interval is increased; otherwise it is decreased.
+ /*
+ * Here the raw frequency offset and wander (stability) is
+ * calculated. If the wander is less than the wander threshold the
+ * interval is increased; otherwise it is decreased.
*/
ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
freq_norm.sec);
- delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
- pps_freq = ftemp;
+ delta = shift_right(ftemp - ntpdata->pps_freq, NTP_SCALE_SHIFT);
+ ntpdata->pps_freq = ftemp;
if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
- printk_deferred(KERN_WARNING
- "hardpps: PPSWANDER: change=%ld\n", delta);
- time_status |= STA_PPSWANDER;
- pps_stbcnt++;
- pps_dec_freq_interval();
- } else { /* good sample */
- pps_inc_freq_interval();
+ printk_deferred(KERN_WARNING "hardpps: PPSWANDER: change=%ld\n", delta);
+ ntpdata->time_status |= STA_PPSWANDER;
+ ntpdata->pps_stbcnt++;
+ pps_dec_freq_interval(ntpdata);
+ } else {
+ /* Good sample */
+ pps_inc_freq_interval(ntpdata);
}
- /* the stability metric is calculated as the average of recent
- * frequency changes, but is used only for performance
- * monitoring
+ /*
+ * The stability metric is calculated as the average of recent
+ * frequency changes, but is used only for performance monitoring
*/
delta_mod = delta;
if (delta_mod < 0)
delta_mod = -delta_mod;
- pps_stabil += (div_s64(((s64)delta_mod) <<
- (NTP_SCALE_SHIFT - SHIFT_USEC),
- NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
-
- /* if enabled, the system clock frequency is updated */
- if ((time_status & STA_PPSFREQ) != 0 &&
- (time_status & STA_FREQHOLD) == 0) {
- time_freq = pps_freq;
- ntp_update_frequency();
+ ntpdata->pps_stabil += (div_s64(((s64)delta_mod) << (NTP_SCALE_SHIFT - SHIFT_USEC),
+ NSEC_PER_USEC) - ntpdata->pps_stabil) >> PPS_INTMIN;
+
+ /* If enabled, the system clock frequency is updated */
+ if ((ntpdata->time_status & STA_PPSFREQ) && !(ntpdata->time_status & STA_FREQHOLD)) {
+ ntpdata->time_freq = ntpdata->pps_freq;
+ ntp_update_frequency(ntpdata);
}
return delta;
}
-/* correct REALTIME clock phase error against PPS signal */
-static void hardpps_update_phase(long error)
+/* Correct REALTIME clock phase error against PPS signal */
+static void hardpps_update_phase(struct ntp_data *ntpdata, long error)
{
long correction = -error;
long jitter;
- /* add the sample to the median filter */
- pps_phase_filter_add(correction);
- correction = pps_phase_filter_get(&jitter);
+ /* Add the sample to the median filter */
+ pps_phase_filter_add(ntpdata, correction);
+ correction = pps_phase_filter_get(ntpdata, &jitter);
- /* Nominal jitter is due to PPS signal noise. If it exceeds the
+ /*
+ * Nominal jitter is due to PPS signal noise. If it exceeds the
* threshold, the sample is discarded; otherwise, if so enabled,
* the time offset is updated.
*/
- if (jitter > (pps_jitter << PPS_POPCORN)) {
- printk_deferred(KERN_WARNING
- "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
- jitter, (pps_jitter << PPS_POPCORN));
- time_status |= STA_PPSJITTER;
- pps_jitcnt++;
- } else if (time_status & STA_PPSTIME) {
- /* correct the time using the phase offset */
- time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
- NTP_INTERVAL_FREQ);
- /* cancel running adjtime() */
- time_adjust = 0;
+ if (jitter > (ntpdata->pps_jitter << PPS_POPCORN)) {
+ printk_deferred(KERN_WARNING "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
+ jitter, (ntpdata->pps_jitter << PPS_POPCORN));
+ ntpdata->time_status |= STA_PPSJITTER;
+ ntpdata->pps_jitcnt++;
+ } else if (ntpdata->time_status & STA_PPSTIME) {
+ /* Correct the time using the phase offset */
+ ntpdata->time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
+ NTP_INTERVAL_FREQ);
+ /* Cancel running adjtime() */
+ ntpdata->time_adjust = 0;
}
- /* update jitter */
- pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
+ /* Update jitter */
+ ntpdata->pps_jitter += (jitter - ntpdata->pps_jitter) >> PPS_INTMIN;
}
/*
@@ -1037,60 +1033,62 @@ static void hardpps_update_phase(long error)
void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
{
struct pps_normtime pts_norm, freq_norm;
+ struct ntp_data *ntpdata = &tk_ntp_data;
pts_norm = pps_normalize_ts(*phase_ts);
- /* clear the error bits, they will be set again if needed */
- time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
+ /* Clear the error bits, they will be set again if needed */
+ ntpdata->time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
/* indicate signal presence */
- time_status |= STA_PPSSIGNAL;
- pps_valid = PPS_VALID;
+ ntpdata->time_status |= STA_PPSSIGNAL;
+ ntpdata->pps_valid = PPS_VALID;
- /* when called for the first time,
- * just start the frequency interval */
- if (unlikely(pps_fbase.tv_sec == 0)) {
- pps_fbase = *raw_ts;
+ /*
+ * When called for the first time, just start the frequency
+ * interval
+ */
+ if (unlikely(ntpdata->pps_fbase.tv_sec == 0)) {
+ ntpdata->pps_fbase = *raw_ts;
return;
}
- /* ok, now we have a base for frequency calculation */
- freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
-
- /* check that the signal is in the range
- * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
- if ((freq_norm.sec == 0) ||
- (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
- (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
- time_status |= STA_PPSJITTER;
- /* restart the frequency calibration interval */
- pps_fbase = *raw_ts;
+ /* Ok, now we have a base for frequency calculation */
+ freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, ntpdata->pps_fbase));
+
+ /*
+ * Check that the signal is in the range
+ * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it
+ */
+ if ((freq_norm.sec == 0) || (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
+ (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
+ ntpdata->time_status |= STA_PPSJITTER;
+ /* Restart the frequency calibration interval */
+ ntpdata->pps_fbase = *raw_ts;
printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
return;
}
- /* signal is ok */
-
- /* check if the current frequency interval is finished */
- if (freq_norm.sec >= (1 << pps_shift)) {
- pps_calcnt++;
- /* restart the frequency calibration interval */
- pps_fbase = *raw_ts;
- hardpps_update_freq(freq_norm);
+ /* Signal is ok. Check if the current frequency interval is finished */
+ if (freq_norm.sec >= (1 << ntpdata->pps_shift)) {
+ ntpdata->pps_calcnt++;
+ /* Restart the frequency calibration interval */
+ ntpdata->pps_fbase = *raw_ts;
+ hardpps_update_freq(ntpdata, freq_norm);
}
- hardpps_update_phase(pts_norm.nsec);
+ hardpps_update_phase(ntpdata, pts_norm.nsec);
}
#endif /* CONFIG_NTP_PPS */
static int __init ntp_tick_adj_setup(char *str)
{
- int rc = kstrtos64(str, 0, &ntp_tick_adj);
+ int rc = kstrtos64(str, 0, &tk_ntp_data.ntp_tick_adj);
if (rc)
return rc;
- ntp_tick_adj <<= NTP_SCALE_SHIFT;
+ tk_ntp_data.ntp_tick_adj <<= NTP_SCALE_SHIFT;
return 1;
}
diff --git a/kernel/time/posix-cpu-timers.c b/kernel/time/posix-cpu-timers.c
index 6bcee4704059..50e8d04ab661 100644
--- a/kernel/time/posix-cpu-timers.c
+++ b/kernel/time/posix-cpu-timers.c
@@ -453,7 +453,6 @@ static void disarm_timer(struct k_itimer *timer, struct task_struct *p)
struct cpu_timer *ctmr = &timer->it.cpu;
struct posix_cputimer_base *base;
- timer->it_active = 0;
if (!cpu_timer_dequeue(ctmr))
return;
@@ -494,19 +493,28 @@ static int posix_cpu_timer_del(struct k_itimer *timer)
*/
WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
} else {
- if (timer->it.cpu.firing)
+ if (timer->it.cpu.firing) {
+ /*
+ * Prevent signal delivery. The timer cannot be dequeued
+ * because it is on the firing list which is not protected
+ * by sighand->lock. The delivery path is waiting for
+ * the timer lock. So go back, unlock and retry.
+ */
+ timer->it.cpu.firing = false;
ret = TIMER_RETRY;
- else
+ } else {
disarm_timer(timer, p);
-
+ }
unlock_task_sighand(p, &flags);
}
out:
rcu_read_unlock();
- if (!ret)
- put_pid(ctmr->pid);
+ if (!ret) {
+ put_pid(ctmr->pid);
+ timer->it_status = POSIX_TIMER_DISARMED;
+ }
return ret;
}
@@ -560,7 +568,7 @@ static void arm_timer(struct k_itimer *timer, struct task_struct *p)
struct cpu_timer *ctmr = &timer->it.cpu;
u64 newexp = cpu_timer_getexpires(ctmr);
- timer->it_active = 1;
+ timer->it_status = POSIX_TIMER_ARMED;
if (!cpu_timer_enqueue(&base->tqhead, ctmr))
return;
@@ -586,29 +594,20 @@ static void cpu_timer_fire(struct k_itimer *timer)
{
struct cpu_timer *ctmr = &timer->it.cpu;
- timer->it_active = 0;
- if (unlikely(timer->sigq == NULL)) {
+ timer->it_status = POSIX_TIMER_DISARMED;
+
+ if (unlikely(ctmr->nanosleep)) {
/*
* This a special case for clock_nanosleep,
* not a normal timer from sys_timer_create.
*/
wake_up_process(timer->it_process);
cpu_timer_setexpires(ctmr, 0);
- } else if (!timer->it_interval) {
- /*
- * One-shot timer. Clear it as soon as it's fired.
- */
+ } else {
posix_timer_queue_signal(timer);
- cpu_timer_setexpires(ctmr, 0);
- } else if (posix_timer_queue_signal(timer)) {
- /*
- * The signal did not get queued because the signal
- * was ignored, so we won't get any callback to
- * reload the timer. But we need to keep it
- * ticking in case the signal is deliverable next time.
- */
- posix_cpu_timer_rearm(timer);
- ++timer->it_requeue_pending;
+ /* Disable oneshot timers */
+ if (!timer->it_interval)
+ cpu_timer_setexpires(ctmr, 0);
}
}
@@ -667,11 +666,17 @@ static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
old_expires = cpu_timer_getexpires(ctmr);
if (unlikely(timer->it.cpu.firing)) {
- timer->it.cpu.firing = -1;
+ /*
+ * Prevent signal delivery. The timer cannot be dequeued
+ * because it is on the firing list which is not protected
+ * by sighand->lock. The delivery path is waiting for
+ * the timer lock. So go back, unlock and retry.
+ */
+ timer->it.cpu.firing = false;
ret = TIMER_RETRY;
} else {
cpu_timer_dequeue(ctmr);
- timer->it_active = 0;
+ timer->it_status = POSIX_TIMER_DISARMED;
}
/*
@@ -745,7 +750,7 @@ static void __posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *i
* - Timers which expired, but the signal has not yet been
* delivered
*/
- if (iv && ((timer->it_requeue_pending & REQUEUE_PENDING) || sigev_none))
+ if (iv && timer->it_status != POSIX_TIMER_ARMED)
expires = bump_cpu_timer(timer, now);
else
expires = cpu_timer_getexpires(&timer->it.cpu);
@@ -808,7 +813,7 @@ static u64 collect_timerqueue(struct timerqueue_head *head,
if (++i == MAX_COLLECTED || now < expires)
return expires;
- ctmr->firing = 1;
+ ctmr->firing = true;
/* See posix_cpu_timer_wait_running() */
rcu_assign_pointer(ctmr->handling, current);
cpu_timer_dequeue(ctmr);
@@ -1363,7 +1368,7 @@ static void handle_posix_cpu_timers(struct task_struct *tsk)
* timer call will interfere.
*/
list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
- int cpu_firing;
+ bool cpu_firing;
/*
* spin_lock() is sufficient here even independent of the
@@ -1375,13 +1380,13 @@ static void handle_posix_cpu_timers(struct task_struct *tsk)
spin_lock(&timer->it_lock);
list_del_init(&timer->it.cpu.elist);
cpu_firing = timer->it.cpu.firing;
- timer->it.cpu.firing = 0;
+ timer->it.cpu.firing = false;
/*
- * The firing flag is -1 if we collided with a reset
- * of the timer, which already reported this
- * almost-firing as an overrun. So don't generate an event.
+ * If the firing flag is cleared then this raced with a
+ * timer rearm/delete operation. So don't generate an
+ * event.
*/
- if (likely(cpu_firing >= 0))
+ if (likely(cpu_firing))
cpu_timer_fire(timer);
/* See posix_cpu_timer_wait_running() */
rcu_assign_pointer(timer->it.cpu.handling, NULL);
@@ -1478,6 +1483,7 @@ static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
timer.it_overrun = -1;
error = posix_cpu_timer_create(&timer);
timer.it_process = current;
+ timer.it.cpu.nanosleep = true;
if (!error) {
static struct itimerspec64 zero_it;
diff --git a/kernel/time/posix-timers.c b/kernel/time/posix-timers.c
index 4576aaed13b2..881a9ce96af7 100644
--- a/kernel/time/posix-timers.c
+++ b/kernel/time/posix-timers.c
@@ -233,11 +233,12 @@ __initcall(init_posix_timers);
* The siginfo si_overrun field and the return value of timer_getoverrun(2)
* are of type int. Clamp the overrun value to INT_MAX
*/
-static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
+static inline int timer_overrun_to_int(struct k_itimer *timr)
{
- s64 sum = timr->it_overrun_last + (s64)baseval;
+ if (timr->it_overrun_last > (s64)INT_MAX)
+ return INT_MAX;
- return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
+ return (int)timr->it_overrun_last;
}
static void common_hrtimer_rearm(struct k_itimer *timr)
@@ -249,62 +250,62 @@ static void common_hrtimer_rearm(struct k_itimer *timr)
hrtimer_restart(timer);
}
+static bool __posixtimer_deliver_signal(struct kernel_siginfo *info, struct k_itimer *timr)
+{
+ guard(spinlock)(&timr->it_lock);
+
+ /*
+ * Check if the timer is still alive or whether it got modified
+ * since the signal was queued. In either case, don't rearm and
+ * drop the signal.
+ */
+ if (timr->it_signal_seq != timr->it_sigqueue_seq || WARN_ON_ONCE(!timr->it_signal))
+ return false;
+
+ if (!timr->it_interval || WARN_ON_ONCE(timr->it_status != POSIX_TIMER_REQUEUE_PENDING))
+ return true;
+
+ timr->kclock->timer_rearm(timr);
+ timr->it_status = POSIX_TIMER_ARMED;
+ timr->it_overrun_last = timr->it_overrun;
+ timr->it_overrun = -1LL;
+ ++timr->it_signal_seq;
+ info->si_overrun = timer_overrun_to_int(timr);
+ return true;
+}
+
/*
- * This function is called from the signal delivery code if
- * info->si_sys_private is not zero, which indicates that the timer has to
- * be rearmed. Restart the timer and update info::si_overrun.
+ * This function is called from the signal delivery code. It decides
+ * whether the signal should be dropped and rearms interval timers. The
+ * timer can be unconditionally accessed as there is a reference held on
+ * it.
*/
-void posixtimer_rearm(struct kernel_siginfo *info)
+bool posixtimer_deliver_signal(struct kernel_siginfo *info, struct sigqueue *timer_sigq)
{
- struct k_itimer *timr;
- unsigned long flags;
-
- timr = lock_timer(info->si_tid, &flags);
- if (!timr)
- return;
+ struct k_itimer *timr = container_of(timer_sigq, struct k_itimer, sigq);
+ bool ret;
- if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
- timr->kclock->timer_rearm(timr);
+ /*
+ * Release siglock to ensure proper locking order versus
+ * timr::it_lock. Keep interrupts disabled.
+ */
+ spin_unlock(&current->sighand->siglock);
- timr->it_active = 1;
- timr->it_overrun_last = timr->it_overrun;
- timr->it_overrun = -1LL;
- ++timr->it_requeue_pending;
+ ret = __posixtimer_deliver_signal(info, timr);
- info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
- }
+ /* Drop the reference which was acquired when the signal was queued */
+ posixtimer_putref(timr);
- unlock_timer(timr, flags);
+ spin_lock(&current->sighand->siglock);
+ return ret;
}
-int posix_timer_queue_signal(struct k_itimer *timr)
+void posix_timer_queue_signal(struct k_itimer *timr)
{
- int ret, si_private = 0;
- enum pid_type type;
-
lockdep_assert_held(&timr->it_lock);
- timr->it_active = 0;
- if (timr->it_interval)
- si_private = ++timr->it_requeue_pending;
-
- /*
- * FIXME: if ->sigq is queued we can race with
- * dequeue_signal()->posixtimer_rearm().
- *
- * If dequeue_signal() sees the "right" value of
- * si_sys_private it calls posixtimer_rearm().
- * We re-queue ->sigq and drop ->it_lock().
- * posixtimer_rearm() locks the timer
- * and re-schedules it while ->sigq is pending.
- * Not really bad, but not that we want.
- */
- timr->sigq->info.si_sys_private = si_private;
-
- type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
- ret = send_sigqueue(timr->sigq, timr->it_pid, type);
- /* If we failed to send the signal the timer stops. */
- return ret > 0;
+ timr->it_status = timr->it_interval ? POSIX_TIMER_REQUEUE_PENDING : POSIX_TIMER_DISARMED;
+ posixtimer_send_sigqueue(timr);
}
/*
@@ -317,62 +318,10 @@ int posix_timer_queue_signal(struct k_itimer *timr)
static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
{
struct k_itimer *timr = container_of(timer, struct k_itimer, it.real.timer);
- enum hrtimer_restart ret = HRTIMER_NORESTART;
- unsigned long flags;
-
- spin_lock_irqsave(&timr->it_lock, flags);
-
- if (posix_timer_queue_signal(timr)) {
- /*
- * The signal was not queued due to SIG_IGN. As a
- * consequence the timer is not going to be rearmed from
- * the signal delivery path. But as a real signal handler
- * can be installed later the timer must be rearmed here.
- */
- if (timr->it_interval != 0) {
- ktime_t now = hrtimer_cb_get_time(timer);
-
- /*
- * FIXME: What we really want, is to stop this
- * timer completely and restart it in case the
- * SIG_IGN is removed. This is a non trivial
- * change to the signal handling code.
- *
- * For now let timers with an interval less than a
- * jiffy expire every jiffy and recheck for a
- * valid signal handler.
- *
- * This avoids interrupt starvation in case of a
- * very small interval, which would expire the
- * timer immediately again.
- *
- * Moving now ahead of time by one jiffy tricks
- * hrtimer_forward() to expire the timer later,
- * while it still maintains the overrun accuracy
- * for the price of a slight inconsistency in the
- * timer_gettime() case. This is at least better
- * than a timer storm.
- *
- * Only required when high resolution timers are
- * enabled as the periodic tick based timers are
- * automatically aligned to the next tick.
- */
- if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS)) {
- ktime_t kj = TICK_NSEC;
-
- if (timr->it_interval < kj)
- now = ktime_add(now, kj);
- }
-
- timr->it_overrun += hrtimer_forward(timer, now, timr->it_interval);
- ret = HRTIMER_RESTART;
- ++timr->it_requeue_pending;
- timr->it_active = 1;
- }
- }
- unlock_timer(timr, flags);
- return ret;
+ guard(spinlock_irqsave)(&timr->it_lock);
+ posix_timer_queue_signal(timr);
+ return HRTIMER_NORESTART;
}
static struct pid *good_sigevent(sigevent_t * event)
@@ -399,32 +348,27 @@ static struct pid *good_sigevent(sigevent_t * event)
}
}
-static struct k_itimer * alloc_posix_timer(void)
+static struct k_itimer *alloc_posix_timer(void)
{
struct k_itimer *tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
if (!tmr)
return tmr;
- if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
+
+ if (unlikely(!posixtimer_init_sigqueue(&tmr->sigq))) {
kmem_cache_free(posix_timers_cache, tmr);
return NULL;
}
- clear_siginfo(&tmr->sigq->info);
+ rcuref_init(&tmr->rcuref, 1);
return tmr;
}
-static void k_itimer_rcu_free(struct rcu_head *head)
-{
- struct k_itimer *tmr = container_of(head, struct k_itimer, rcu);
-
- kmem_cache_free(posix_timers_cache, tmr);
-}
-
-static void posix_timer_free(struct k_itimer *tmr)
+void posixtimer_free_timer(struct k_itimer *tmr)
{
put_pid(tmr->it_pid);
- sigqueue_free(tmr->sigq);
- call_rcu(&tmr->rcu, k_itimer_rcu_free);
+ if (tmr->sigq.ucounts)
+ dec_rlimit_put_ucounts(tmr->sigq.ucounts, UCOUNT_RLIMIT_SIGPENDING);
+ kfree_rcu(tmr, rcu);
}
static void posix_timer_unhash_and_free(struct k_itimer *tmr)
@@ -432,7 +376,7 @@ static void posix_timer_unhash_and_free(struct k_itimer *tmr)
spin_lock(&hash_lock);
hlist_del_rcu(&tmr->t_hash);
spin_unlock(&hash_lock);
- posix_timer_free(tmr);
+ posixtimer_putref(tmr);
}
static int common_timer_create(struct k_itimer *new_timer)
@@ -467,7 +411,7 @@ static int do_timer_create(clockid_t which_clock, struct sigevent *event,
*/
new_timer_id = posix_timer_add(new_timer);
if (new_timer_id < 0) {
- posix_timer_free(new_timer);
+ posixtimer_free_timer(new_timer);
return new_timer_id;
}
@@ -485,18 +429,23 @@ static int do_timer_create(clockid_t which_clock, struct sigevent *event,
goto out;
}
new_timer->it_sigev_notify = event->sigev_notify;
- new_timer->sigq->info.si_signo = event->sigev_signo;
- new_timer->sigq->info.si_value = event->sigev_value;
+ new_timer->sigq.info.si_signo = event->sigev_signo;
+ new_timer->sigq.info.si_value = event->sigev_value;
} else {
new_timer->it_sigev_notify = SIGEV_SIGNAL;
- new_timer->sigq->info.si_signo = SIGALRM;
- memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
- new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
+ new_timer->sigq.info.si_signo = SIGALRM;
+ memset(&new_timer->sigq.info.si_value, 0, sizeof(sigval_t));
+ new_timer->sigq.info.si_value.sival_int = new_timer->it_id;
new_timer->it_pid = get_pid(task_tgid(current));
}
- new_timer->sigq->info.si_tid = new_timer->it_id;
- new_timer->sigq->info.si_code = SI_TIMER;
+ if (new_timer->it_sigev_notify & SIGEV_THREAD_ID)
+ new_timer->it_pid_type = PIDTYPE_PID;
+ else
+ new_timer->it_pid_type = PIDTYPE_TGID;
+
+ new_timer->sigq.info.si_tid = new_timer->it_id;
+ new_timer->sigq.info.si_code = SI_TIMER;
if (copy_to_user(created_timer_id, &new_timer_id, sizeof (new_timer_id))) {
error = -EFAULT;
@@ -580,7 +529,14 @@ static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
* 1) Set timr::it_signal to NULL with timr::it_lock held
* 2) Release timr::it_lock
* 3) Remove from the hash under hash_lock
- * 4) Call RCU for removal after the grace period
+ * 4) Put the reference count.
+ *
+ * The reference count might not drop to zero if timr::sigq is
+ * queued. In that case the signal delivery or flush will put the
+ * last reference count.
+ *
+ * When the reference count reaches zero, the timer is scheduled
+ * for RCU removal after the grace period.
*
* Holding rcu_read_lock() accross the lookup ensures that
* the timer cannot be freed.
@@ -647,10 +603,10 @@ void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
/* interval timer ? */
if (iv) {
cur_setting->it_interval = ktime_to_timespec64(iv);
- } else if (!timr->it_active) {
+ } else if (timr->it_status == POSIX_TIMER_DISARMED) {
/*
* SIGEV_NONE oneshot timers are never queued and therefore
- * timr->it_active is always false. The check below
+ * timr->it_status is always DISARMED. The check below
* vs. remaining time will handle this case.
*
* For all other timers there is nothing to update here, so
@@ -667,7 +623,7 @@ void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
* is a SIGEV_NONE timer move the expiry time forward by intervals,
* so expiry is > now.
*/
- if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
+ if (iv && timr->it_status != POSIX_TIMER_ARMED)
timr->it_overrun += kc->timer_forward(timr, now);
remaining = kc->timer_remaining(timr, now);
@@ -775,7 +731,7 @@ SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
if (!timr)
return -EINVAL;
- overrun = timer_overrun_to_int(timr, 0);
+ overrun = timer_overrun_to_int(timr);
unlock_timer(timr, flags);
return overrun;
@@ -867,8 +823,6 @@ void posix_timer_set_common(struct k_itimer *timer, struct itimerspec64 *new_set
else
timer->it_interval = 0;
- /* Prevent reloading in case there is a signal pending */
- timer->it_requeue_pending = (timer->it_requeue_pending + 2) & ~REQUEUE_PENDING;
/* Reset overrun accounting */
timer->it_overrun_last = 0;
timer->it_overrun = -1LL;
@@ -886,8 +840,6 @@ int common_timer_set(struct k_itimer *timr, int flags,
if (old_setting)
common_timer_get(timr, old_setting);
- /* Prevent rearming by clearing the interval */
- timr->it_interval = 0;
/*
* Careful here. On SMP systems the timer expiry function could be
* active and spinning on timr->it_lock.
@@ -895,7 +847,7 @@ int common_timer_set(struct k_itimer *timr, int flags,
if (kc->timer_try_to_cancel(timr) < 0)
return TIMER_RETRY;
- timr->it_active = 0;
+ timr->it_status = POSIX_TIMER_DISARMED;
posix_timer_set_common(timr, new_setting);
/* Keep timer disarmed when it_value is zero */
@@ -908,7 +860,8 @@ int common_timer_set(struct k_itimer *timr, int flags,
sigev_none = timr->it_sigev_notify == SIGEV_NONE;
kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
- timr->it_active = !sigev_none;
+ if (!sigev_none)
+ timr->it_status = POSIX_TIMER_ARMED;
return 0;
}
@@ -936,6 +889,9 @@ retry:
if (old_spec64)
old_spec64->it_interval = ktime_to_timespec64(timr->it_interval);
+ /* Prevent signal delivery and rearming. */
+ timr->it_signal_seq++;
+
kc = timr->kclock;
if (WARN_ON_ONCE(!kc || !kc->timer_set))
error = -EINVAL;
@@ -1004,17 +960,31 @@ int common_timer_del(struct k_itimer *timer)
{
const struct k_clock *kc = timer->kclock;
- timer->it_interval = 0;
if (kc->timer_try_to_cancel(timer) < 0)
return TIMER_RETRY;
- timer->it_active = 0;
+ timer->it_status = POSIX_TIMER_DISARMED;
return 0;
}
+/*
+ * If the deleted timer is on the ignored list, remove it and
+ * drop the associated reference.
+ */
+static inline void posix_timer_cleanup_ignored(struct k_itimer *tmr)
+{
+ if (!hlist_unhashed(&tmr->ignored_list)) {
+ hlist_del_init(&tmr->ignored_list);
+ posixtimer_putref(tmr);
+ }
+}
+
static inline int timer_delete_hook(struct k_itimer *timer)
{
const struct k_clock *kc = timer->kclock;
+ /* Prevent signal delivery and rearming. */
+ timer->it_signal_seq++;
+
if (WARN_ON_ONCE(!kc || !kc->timer_del))
return -EINVAL;
return kc->timer_del(timer);
@@ -1040,12 +1010,18 @@ retry_delete:
spin_lock(&current->sighand->siglock);
hlist_del(&timer->list);
- spin_unlock(&current->sighand->siglock);
+ posix_timer_cleanup_ignored(timer);
/*
* A concurrent lookup could check timer::it_signal lockless. It
* will reevaluate with timer::it_lock held and observe the NULL.
+ *
+ * It must be written with siglock held so that the signal code
+ * observes timer->it_signal == NULL in do_sigaction(SIG_IGN),
+ * which prevents it from moving a pending signal of a deleted
+ * timer to the ignore list.
*/
WRITE_ONCE(timer->it_signal, NULL);
+ spin_unlock(&current->sighand->siglock);
unlock_timer(timer, flags);
posix_timer_unhash_and_free(timer);
@@ -1091,6 +1067,8 @@ retry_delete:
}
hlist_del(&timer->list);
+ posix_timer_cleanup_ignored(timer);
+
/*
* Setting timer::it_signal to NULL is technically not required
* here as nothing can access the timer anymore legitimately via
@@ -1123,6 +1101,19 @@ void exit_itimers(struct task_struct *tsk)
/* The timers are not longer accessible via tsk::signal */
while (!hlist_empty(&timers))
itimer_delete(hlist_entry(timers.first, struct k_itimer, list));
+
+ /*
+ * There should be no timers on the ignored list. itimer_delete() has
+ * mopped them up.
+ */
+ if (!WARN_ON_ONCE(!hlist_empty(&tsk->signal->ignored_posix_timers)))
+ return;
+
+ hlist_move_list(&tsk->signal->ignored_posix_timers, &timers);
+ while (!hlist_empty(&timers)) {
+ posix_timer_cleanup_ignored(hlist_entry(timers.first, struct k_itimer,
+ ignored_list));
+ }
}
SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
diff --git a/kernel/time/posix-timers.h b/kernel/time/posix-timers.h
index 4784ea65f685..61906f0688c1 100644
--- a/kernel/time/posix-timers.h
+++ b/kernel/time/posix-timers.h
@@ -1,6 +1,12 @@
/* SPDX-License-Identifier: GPL-2.0 */
#define TIMER_RETRY 1
+enum posix_timer_state {
+ POSIX_TIMER_DISARMED,
+ POSIX_TIMER_ARMED,
+ POSIX_TIMER_REQUEUE_PENDING,
+};
+
struct k_clock {
int (*clock_getres)(const clockid_t which_clock,
struct timespec64 *tp);
@@ -36,7 +42,7 @@ extern const struct k_clock clock_process;
extern const struct k_clock clock_thread;
extern const struct k_clock alarm_clock;
-int posix_timer_queue_signal(struct k_itimer *timr);
+void posix_timer_queue_signal(struct k_itimer *timr);
void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting);
int common_timer_set(struct k_itimer *timr, int flags,
diff --git a/kernel/time/sched_clock.c b/kernel/time/sched_clock.c
index 68d6c1190ac7..fcca4e72f1ef 100644
--- a/kernel/time/sched_clock.c
+++ b/kernel/time/sched_clock.c
@@ -71,16 +71,16 @@ static __always_inline u64 cyc_to_ns(u64 cyc, u32 mult, u32 shift)
notrace struct clock_read_data *sched_clock_read_begin(unsigned int *seq)
{
- *seq = raw_read_seqcount_latch(&cd.seq);
+ *seq = read_seqcount_latch(&cd.seq);
return cd.read_data + (*seq & 1);
}
notrace int sched_clock_read_retry(unsigned int seq)
{
- return raw_read_seqcount_latch_retry(&cd.seq, seq);
+ return read_seqcount_latch_retry(&cd.seq, seq);
}
-unsigned long long noinstr sched_clock_noinstr(void)
+static __always_inline unsigned long long __sched_clock(void)
{
struct clock_read_data *rd;
unsigned int seq;
@@ -98,11 +98,23 @@ unsigned long long noinstr sched_clock_noinstr(void)
return res;
}
+unsigned long long noinstr sched_clock_noinstr(void)
+{
+ return __sched_clock();
+}
+
unsigned long long notrace sched_clock(void)
{
unsigned long long ns;
preempt_disable_notrace();
- ns = sched_clock_noinstr();
+ /*
+ * All of __sched_clock() is a seqcount_latch reader critical section,
+ * but relies on the raw helpers which are uninstrumented. For KCSAN,
+ * mark all accesses in __sched_clock() as atomic.
+ */
+ kcsan_nestable_atomic_begin();
+ ns = __sched_clock();
+ kcsan_nestable_atomic_end();
preempt_enable_notrace();
return ns;
}
@@ -119,17 +131,19 @@ unsigned long long notrace sched_clock(void)
*/
static void update_clock_read_data(struct clock_read_data *rd)
{
- /* update the backup (odd) copy with the new data */
- cd.read_data[1] = *rd;
-
/* steer readers towards the odd copy */
- raw_write_seqcount_latch(&cd.seq);
+ write_seqcount_latch_begin(&cd.seq);
/* now its safe for us to update the normal (even) copy */
cd.read_data[0] = *rd;
/* switch readers back to the even copy */
- raw_write_seqcount_latch(&cd.seq);
+ write_seqcount_latch(&cd.seq);
+
+ /* update the backup (odd) copy with the new data */
+ cd.read_data[1] = *rd;
+
+ write_seqcount_latch_end(&cd.seq);
}
/*
@@ -267,7 +281,7 @@ void __init generic_sched_clock_init(void)
*/
static u64 notrace suspended_sched_clock_read(void)
{
- unsigned int seq = raw_read_seqcount_latch(&cd.seq);
+ unsigned int seq = read_seqcount_latch(&cd.seq);
return cd.read_data[seq & 1].epoch_cyc;
}
diff --git a/kernel/time/sleep_timeout.c b/kernel/time/sleep_timeout.c
new file mode 100644
index 000000000000..dfe939f6e4ec
--- /dev/null
+++ b/kernel/time/sleep_timeout.c
@@ -0,0 +1,377 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Kernel internal schedule timeout and sleeping functions
+ */
+
+#include <linux/delay.h>
+#include <linux/jiffies.h>
+#include <linux/timer.h>
+#include <linux/sched/signal.h>
+#include <linux/sched/debug.h>
+
+#include "tick-internal.h"
+
+/*
+ * Since schedule_timeout()'s timer is defined on the stack, it must store
+ * the target task on the stack as well.
+ */
+struct process_timer {
+ struct timer_list timer;
+ struct task_struct *task;
+};
+
+static void process_timeout(struct timer_list *t)
+{
+ struct process_timer *timeout = from_timer(timeout, t, timer);
+
+ wake_up_process(timeout->task);
+}
+
+/**
+ * schedule_timeout - sleep until timeout
+ * @timeout: timeout value in jiffies
+ *
+ * Make the current task sleep until @timeout jiffies have elapsed.
+ * The function behavior depends on the current task state
+ * (see also set_current_state() description):
+ *
+ * %TASK_RUNNING - the scheduler is called, but the task does not sleep
+ * at all. That happens because sched_submit_work() does nothing for
+ * tasks in %TASK_RUNNING state.
+ *
+ * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
+ * pass before the routine returns unless the current task is explicitly
+ * woken up, (e.g. by wake_up_process()).
+ *
+ * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
+ * delivered to the current task or the current task is explicitly woken
+ * up.
+ *
+ * The current task state is guaranteed to be %TASK_RUNNING when this
+ * routine returns.
+ *
+ * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
+ * the CPU away without a bound on the timeout. In this case the return
+ * value will be %MAX_SCHEDULE_TIMEOUT.
+ *
+ * Returns: 0 when the timer has expired otherwise the remaining time in
+ * jiffies will be returned. In all cases the return value is guaranteed
+ * to be non-negative.
+ */
+signed long __sched schedule_timeout(signed long timeout)
+{
+ struct process_timer timer;
+ unsigned long expire;
+
+ switch (timeout) {
+ case MAX_SCHEDULE_TIMEOUT:
+ /*
+ * These two special cases are useful to be comfortable
+ * in the caller. Nothing more. We could take
+ * MAX_SCHEDULE_TIMEOUT from one of the negative value
+ * but I' d like to return a valid offset (>=0) to allow
+ * the caller to do everything it want with the retval.
+ */
+ schedule();
+ goto out;
+ default:
+ /*
+ * Another bit of PARANOID. Note that the retval will be
+ * 0 since no piece of kernel is supposed to do a check
+ * for a negative retval of schedule_timeout() (since it
+ * should never happens anyway). You just have the printk()
+ * that will tell you if something is gone wrong and where.
+ */
+ if (timeout < 0) {
+ pr_err("%s: wrong timeout value %lx\n", __func__, timeout);
+ dump_stack();
+ __set_current_state(TASK_RUNNING);
+ goto out;
+ }
+ }
+
+ expire = timeout + jiffies;
+
+ timer.task = current;
+ timer_setup_on_stack(&timer.timer, process_timeout, 0);
+ timer.timer.expires = expire;
+ add_timer(&timer.timer);
+ schedule();
+ del_timer_sync(&timer.timer);
+
+ /* Remove the timer from the object tracker */
+ destroy_timer_on_stack(&timer.timer);
+
+ timeout = expire - jiffies;
+
+ out:
+ return timeout < 0 ? 0 : timeout;
+}
+EXPORT_SYMBOL(schedule_timeout);
+
+/*
+ * __set_current_state() can be used in schedule_timeout_*() functions, because
+ * schedule_timeout() calls schedule() unconditionally.
+ */
+
+/**
+ * schedule_timeout_interruptible - sleep until timeout (interruptible)
+ * @timeout: timeout value in jiffies
+ *
+ * See schedule_timeout() for details.
+ *
+ * Task state is set to TASK_INTERRUPTIBLE before starting the timeout.
+ */
+signed long __sched schedule_timeout_interruptible(signed long timeout)
+{
+ __set_current_state(TASK_INTERRUPTIBLE);
+ return schedule_timeout(timeout);
+}
+EXPORT_SYMBOL(schedule_timeout_interruptible);
+
+/**
+ * schedule_timeout_killable - sleep until timeout (killable)
+ * @timeout: timeout value in jiffies
+ *
+ * See schedule_timeout() for details.
+ *
+ * Task state is set to TASK_KILLABLE before starting the timeout.
+ */
+signed long __sched schedule_timeout_killable(signed long timeout)
+{
+ __set_current_state(TASK_KILLABLE);
+ return schedule_timeout(timeout);
+}
+EXPORT_SYMBOL(schedule_timeout_killable);
+
+/**
+ * schedule_timeout_uninterruptible - sleep until timeout (uninterruptible)
+ * @timeout: timeout value in jiffies
+ *
+ * See schedule_timeout() for details.
+ *
+ * Task state is set to TASK_UNINTERRUPTIBLE before starting the timeout.
+ */
+signed long __sched schedule_timeout_uninterruptible(signed long timeout)
+{
+ __set_current_state(TASK_UNINTERRUPTIBLE);
+ return schedule_timeout(timeout);
+}
+EXPORT_SYMBOL(schedule_timeout_uninterruptible);
+
+/**
+ * schedule_timeout_idle - sleep until timeout (idle)
+ * @timeout: timeout value in jiffies
+ *
+ * See schedule_timeout() for details.
+ *
+ * Task state is set to TASK_IDLE before starting the timeout. It is similar to
+ * schedule_timeout_uninterruptible(), except this task will not contribute to
+ * load average.
+ */
+signed long __sched schedule_timeout_idle(signed long timeout)
+{
+ __set_current_state(TASK_IDLE);
+ return schedule_timeout(timeout);
+}
+EXPORT_SYMBOL(schedule_timeout_idle);
+
+/**
+ * schedule_hrtimeout_range_clock - sleep until timeout
+ * @expires: timeout value (ktime_t)
+ * @delta: slack in expires timeout (ktime_t)
+ * @mode: timer mode
+ * @clock_id: timer clock to be used
+ *
+ * Details are explained in schedule_hrtimeout_range() function description as
+ * this function is commonly used.
+ */
+int __sched schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
+ const enum hrtimer_mode mode, clockid_t clock_id)
+{
+ struct hrtimer_sleeper t;
+
+ /*
+ * Optimize when a zero timeout value is given. It does not
+ * matter whether this is an absolute or a relative time.
+ */
+ if (expires && *expires == 0) {
+ __set_current_state(TASK_RUNNING);
+ return 0;
+ }
+
+ /*
+ * A NULL parameter means "infinite"
+ */
+ if (!expires) {
+ schedule();
+ return -EINTR;
+ }
+
+ hrtimer_setup_sleeper_on_stack(&t, clock_id, mode);
+ hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
+ hrtimer_sleeper_start_expires(&t, mode);
+
+ if (likely(t.task))
+ schedule();
+
+ hrtimer_cancel(&t.timer);
+ destroy_hrtimer_on_stack(&t.timer);
+
+ __set_current_state(TASK_RUNNING);
+
+ return !t.task ? 0 : -EINTR;
+}
+EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock);
+
+/**
+ * schedule_hrtimeout_range - sleep until timeout
+ * @expires: timeout value (ktime_t)
+ * @delta: slack in expires timeout (ktime_t)
+ * @mode: timer mode
+ *
+ * Make the current task sleep until the given expiry time has
+ * elapsed. The routine will return immediately unless
+ * the current task state has been set (see set_current_state()).
+ *
+ * The @delta argument gives the kernel the freedom to schedule the
+ * actual wakeup to a time that is both power and performance friendly
+ * for regular (non RT/DL) tasks.
+ * The kernel give the normal best effort behavior for "@expires+@delta",
+ * but may decide to fire the timer earlier, but no earlier than @expires.
+ *
+ * You can set the task state as follows -
+ *
+ * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
+ * pass before the routine returns unless the current task is explicitly
+ * woken up, (e.g. by wake_up_process()).
+ *
+ * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
+ * delivered to the current task or the current task is explicitly woken
+ * up.
+ *
+ * The current task state is guaranteed to be TASK_RUNNING when this
+ * routine returns.
+ *
+ * Returns: 0 when the timer has expired. If the task was woken before the
+ * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
+ * by an explicit wakeup, it returns -EINTR.
+ */
+int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
+ const enum hrtimer_mode mode)
+{
+ return schedule_hrtimeout_range_clock(expires, delta, mode,
+ CLOCK_MONOTONIC);
+}
+EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
+
+/**
+ * schedule_hrtimeout - sleep until timeout
+ * @expires: timeout value (ktime_t)
+ * @mode: timer mode
+ *
+ * See schedule_hrtimeout_range() for details. @delta argument of
+ * schedule_hrtimeout_range() is set to 0 and has therefore no impact.
+ */
+int __sched schedule_hrtimeout(ktime_t *expires, const enum hrtimer_mode mode)
+{
+ return schedule_hrtimeout_range(expires, 0, mode);
+}
+EXPORT_SYMBOL_GPL(schedule_hrtimeout);
+
+/**
+ * msleep - sleep safely even with waitqueue interruptions
+ * @msecs: Requested sleep duration in milliseconds
+ *
+ * msleep() uses jiffy based timeouts for the sleep duration. Because of the
+ * design of the timer wheel, the maximum additional percentage delay (slack) is
+ * 12.5%. This is only valid for timers which will end up in level 1 or a higher
+ * level of the timer wheel. For explanation of those 12.5% please check the
+ * detailed description about the basics of the timer wheel.
+ *
+ * The slack of timers which will end up in level 0 depends on sleep duration
+ * (msecs) and HZ configuration and can be calculated in the following way (with
+ * the timer wheel design restriction that the slack is not less than 12.5%):
+ *
+ * ``slack = MSECS_PER_TICK / msecs``
+ *
+ * When the allowed slack of the callsite is known, the calculation could be
+ * turned around to find the minimal allowed sleep duration to meet the
+ * constraints. For example:
+ *
+ * * ``HZ=1000`` with ``slack=25%``: ``MSECS_PER_TICK / slack = 1 / (1/4) = 4``:
+ * all sleep durations greater or equal 4ms will meet the constraints.
+ * * ``HZ=1000`` with ``slack=12.5%``: ``MSECS_PER_TICK / slack = 1 / (1/8) = 8``:
+ * all sleep durations greater or equal 8ms will meet the constraints.
+ * * ``HZ=250`` with ``slack=25%``: ``MSECS_PER_TICK / slack = 4 / (1/4) = 16``:
+ * all sleep durations greater or equal 16ms will meet the constraints.
+ * * ``HZ=250`` with ``slack=12.5%``: ``MSECS_PER_TICK / slack = 4 / (1/8) = 32``:
+ * all sleep durations greater or equal 32ms will meet the constraints.
+ *
+ * See also the signal aware variant msleep_interruptible().
+ */
+void msleep(unsigned int msecs)
+{
+ unsigned long timeout = msecs_to_jiffies(msecs);
+
+ while (timeout)
+ timeout = schedule_timeout_uninterruptible(timeout);
+}
+EXPORT_SYMBOL(msleep);
+
+/**
+ * msleep_interruptible - sleep waiting for signals
+ * @msecs: Requested sleep duration in milliseconds
+ *
+ * See msleep() for some basic information.
+ *
+ * The difference between msleep() and msleep_interruptible() is that the sleep
+ * could be interrupted by a signal delivery and then returns early.
+ *
+ * Returns: The remaining time of the sleep duration transformed to msecs (see
+ * schedule_timeout() for details).
+ */
+unsigned long msleep_interruptible(unsigned int msecs)
+{
+ unsigned long timeout = msecs_to_jiffies(msecs);
+
+ while (timeout && !signal_pending(current))
+ timeout = schedule_timeout_interruptible(timeout);
+ return jiffies_to_msecs(timeout);
+}
+EXPORT_SYMBOL(msleep_interruptible);
+
+/**
+ * usleep_range_state - Sleep for an approximate time in a given state
+ * @min: Minimum time in usecs to sleep
+ * @max: Maximum time in usecs to sleep
+ * @state: State of the current task that will be while sleeping
+ *
+ * usleep_range_state() sleeps at least for the minimum specified time but not
+ * longer than the maximum specified amount of time. The range might reduce
+ * power usage by allowing hrtimers to coalesce an already scheduled interrupt
+ * with this hrtimer. In the worst case, an interrupt is scheduled for the upper
+ * bound.
+ *
+ * The sleeping task is set to the specified state before starting the sleep.
+ *
+ * In non-atomic context where the exact wakeup time is flexible, use
+ * usleep_range() or its variants instead of udelay(). The sleep improves
+ * responsiveness by avoiding the CPU-hogging busy-wait of udelay().
+ */
+void __sched usleep_range_state(unsigned long min, unsigned long max, unsigned int state)
+{
+ ktime_t exp = ktime_add_us(ktime_get(), min);
+ u64 delta = (u64)(max - min) * NSEC_PER_USEC;
+
+ if (WARN_ON_ONCE(max < min))
+ delta = 0;
+
+ for (;;) {
+ __set_current_state(state);
+ /* Do not return before the requested sleep time has elapsed */
+ if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
+ break;
+ }
+}
+EXPORT_SYMBOL(usleep_range_state);
diff --git a/kernel/time/tick-internal.h b/kernel/time/tick-internal.h
index 5f2105e637bd..faac36de35b9 100644
--- a/kernel/time/tick-internal.h
+++ b/kernel/time/tick-internal.h
@@ -25,6 +25,7 @@ extern int tick_do_timer_cpu __read_mostly;
extern void tick_setup_periodic(struct clock_event_device *dev, int broadcast);
extern void tick_handle_periodic(struct clock_event_device *dev);
extern void tick_check_new_device(struct clock_event_device *dev);
+extern void tick_offline_cpu(unsigned int cpu);
extern void tick_shutdown(unsigned int cpu);
extern void tick_suspend(void);
extern void tick_resume(void);
@@ -142,10 +143,8 @@ static inline bool tick_broadcast_oneshot_available(void) { return tick_oneshot_
#endif /* !(BROADCAST && ONESHOT) */
#if defined(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST) && defined(CONFIG_HOTPLUG_CPU)
-extern void tick_offline_cpu(unsigned int cpu);
extern void tick_broadcast_offline(unsigned int cpu);
#else
-static inline void tick_offline_cpu(unsigned int cpu) { }
static inline void tick_broadcast_offline(unsigned int cpu) { }
#endif
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c
index f203f000da1a..fa058510af9c 100644
--- a/kernel/time/tick-sched.c
+++ b/kernel/time/tick-sched.c
@@ -311,14 +311,6 @@ static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer)
return HRTIMER_RESTART;
}
-static void tick_sched_timer_cancel(struct tick_sched *ts)
-{
- if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
- hrtimer_cancel(&ts->sched_timer);
- else if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
- tick_program_event(KTIME_MAX, 1);
-}
-
#ifdef CONFIG_NO_HZ_FULL
cpumask_var_t tick_nohz_full_mask;
EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
@@ -865,7 +857,7 @@ static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
static inline bool local_timer_softirq_pending(void)
{
- return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
+ return local_timers_pending() & BIT(TIMER_SOFTIRQ);
}
/*
@@ -1061,7 +1053,10 @@ static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
* the tick timer.
*/
if (unlikely(expires == KTIME_MAX)) {
- tick_sched_timer_cancel(ts);
+ if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
+ hrtimer_cancel(&ts->sched_timer);
+ else
+ tick_program_event(KTIME_MAX, 1);
return;
}
@@ -1610,21 +1605,13 @@ void tick_setup_sched_timer(bool hrtimer)
*/
void tick_sched_timer_dying(int cpu)
{
- struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
- struct clock_event_device *dev = td->evtdev;
ktime_t idle_sleeptime, iowait_sleeptime;
unsigned long idle_calls, idle_sleeps;
/* This must happen before hrtimers are migrated! */
- tick_sched_timer_cancel(ts);
-
- /*
- * If the clockevents doesn't support CLOCK_EVT_STATE_ONESHOT_STOPPED,
- * make sure not to call low-res tick handler.
- */
- if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
- dev->event_handler = clockevents_handle_noop;
+ if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
+ hrtimer_cancel(&ts->sched_timer);
idle_sleeptime = ts->idle_sleeptime;
iowait_sleeptime = ts->iowait_sleeptime;
diff --git a/kernel/time/time.c b/kernel/time/time.c
index 642647f5046b..1b69caa87480 100644
--- a/kernel/time/time.c
+++ b/kernel/time/time.c
@@ -556,9 +556,9 @@ EXPORT_SYMBOL(ns_to_timespec64);
* - all other values are converted to jiffies by either multiplying
* the input value by a factor or dividing it with a factor and
* handling any 32-bit overflows.
- * for the details see __msecs_to_jiffies()
+ * for the details see _msecs_to_jiffies()
*
- * __msecs_to_jiffies() checks for the passed in value being a constant
+ * msecs_to_jiffies() checks for the passed in value being a constant
* via __builtin_constant_p() allowing gcc to eliminate most of the
* code, __msecs_to_jiffies() is called if the value passed does not
* allow constant folding and the actual conversion must be done at
@@ -866,7 +866,7 @@ struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
*
* Handles compat or 32-bit modes.
*
- * Return: %0 on success or negative errno on error
+ * Return: 0 on success or negative errno on error
*/
int get_timespec64(struct timespec64 *ts,
const struct __kernel_timespec __user *uts)
@@ -897,7 +897,7 @@ EXPORT_SYMBOL_GPL(get_timespec64);
* @ts: input &struct timespec64
* @uts: user's &struct __kernel_timespec
*
- * Return: %0 on success or negative errno on error
+ * Return: 0 on success or negative errno on error
*/
int put_timespec64(const struct timespec64 *ts,
struct __kernel_timespec __user *uts)
@@ -944,7 +944,7 @@ static int __put_old_timespec32(const struct timespec64 *ts64,
*
* Handles X86_X32_ABI compatibility conversion.
*
- * Return: %0 on success or negative errno on error
+ * Return: 0 on success or negative errno on error
*/
int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
{
@@ -963,7 +963,7 @@ EXPORT_SYMBOL_GPL(get_old_timespec32);
*
* Handles X86_X32_ABI compatibility conversion.
*
- * Return: %0 on success or negative errno on error
+ * Return: 0 on success or negative errno on error
*/
int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
{
@@ -979,7 +979,7 @@ EXPORT_SYMBOL_GPL(put_old_timespec32);
* @it: destination &struct itimerspec64
* @uit: user's &struct __kernel_itimerspec
*
- * Return: %0 on success or negative errno on error
+ * Return: 0 on success or negative errno on error
*/
int get_itimerspec64(struct itimerspec64 *it,
const struct __kernel_itimerspec __user *uit)
@@ -1002,7 +1002,7 @@ EXPORT_SYMBOL_GPL(get_itimerspec64);
* @it: input &struct itimerspec64
* @uit: user's &struct __kernel_itimerspec
*
- * Return: %0 on success or negative errno on error
+ * Return: 0 on success or negative errno on error
*/
int put_itimerspec64(const struct itimerspec64 *it,
struct __kernel_itimerspec __user *uit)
@@ -1024,7 +1024,7 @@ EXPORT_SYMBOL_GPL(put_itimerspec64);
* @its: destination &struct itimerspec64
* @uits: user's &struct old_itimerspec32
*
- * Return: %0 on success or negative errno on error
+ * Return: 0 on success or negative errno on error
*/
int get_old_itimerspec32(struct itimerspec64 *its,
const struct old_itimerspec32 __user *uits)
@@ -1043,7 +1043,7 @@ EXPORT_SYMBOL_GPL(get_old_itimerspec32);
* @its: input &struct itimerspec64
* @uits: user's &struct old_itimerspec32
*
- * Return: %0 on success or negative errno on error
+ * Return: 0 on success or negative errno on error
*/
int put_old_itimerspec32(const struct itimerspec64 *its,
struct old_itimerspec32 __user *uits)
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c
index 7e6f409bf311..0ca85ff4fbb4 100644
--- a/kernel/time/timekeeping.c
+++ b/kernel/time/timekeeping.c
@@ -30,8 +30,9 @@
#include "timekeeping_internal.h"
#define TK_CLEAR_NTP (1 << 0)
-#define TK_MIRROR (1 << 1)
-#define TK_CLOCK_WAS_SET (1 << 2)
+#define TK_CLOCK_WAS_SET (1 << 1)
+
+#define TK_UPDATE_ALL (TK_CLEAR_NTP | TK_CLOCK_WAS_SET)
enum timekeeping_adv_mode {
/* Update timekeeper when a tick has passed */
@@ -41,20 +42,18 @@ enum timekeeping_adv_mode {
TK_ADV_FREQ
};
-DEFINE_RAW_SPINLOCK(timekeeper_lock);
-
/*
* The most important data for readout fits into a single 64 byte
* cache line.
*/
-static struct {
+struct tk_data {
seqcount_raw_spinlock_t seq;
struct timekeeper timekeeper;
-} tk_core ____cacheline_aligned = {
- .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
-};
+ struct timekeeper shadow_timekeeper;
+ raw_spinlock_t lock;
+} ____cacheline_aligned;
-static struct timekeeper shadow_timekeeper;
+static struct tk_data tk_core;
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;
@@ -114,6 +113,36 @@ static struct tk_fast tk_fast_raw ____cacheline_aligned = {
.base[1] = FAST_TK_INIT,
};
+unsigned long timekeeper_lock_irqsave(void)
+{
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&tk_core.lock, flags);
+ return flags;
+}
+
+void timekeeper_unlock_irqrestore(unsigned long flags)
+{
+ raw_spin_unlock_irqrestore(&tk_core.lock, flags);
+}
+
+/*
+ * Multigrain timestamps require tracking the latest fine-grained timestamp
+ * that has been issued, and never returning a coarse-grained timestamp that is
+ * earlier than that value.
+ *
+ * mg_floor represents the latest fine-grained time that has been handed out as
+ * a file timestamp on the system. This is tracked as a monotonic ktime_t, and
+ * converted to a realtime clock value on an as-needed basis.
+ *
+ * Maintaining mg_floor ensures the multigrain interfaces never issue a
+ * timestamp earlier than one that has been previously issued.
+ *
+ * The exception to this rule is when there is a backward realtime clock jump. If
+ * such an event occurs, a timestamp can appear to be earlier than a previous one.
+ */
+static __cacheline_aligned_in_smp atomic64_t mg_floor;
+
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
@@ -161,13 +190,15 @@ static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
tk->wall_to_monotonic = wtm;
set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
- tk->offs_real = timespec64_to_ktime(tmp);
- tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
+ /* Paired with READ_ONCE() in ktime_mono_to_any() */
+ WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp));
+ WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)));
}
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
{
- tk->offs_boot = ktime_add(tk->offs_boot, delta);
+ /* Paired with READ_ONCE() in ktime_mono_to_any() */
+ WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta));
/*
* Timespec representation for VDSO update to avoid 64bit division
* on every update.
@@ -184,7 +215,7 @@ static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
* the tkr's clocksource may change between the read reference, and the
* clock reference passed to the read function. This can cause crashes if
* the wrong clocksource is passed to the wrong read function.
- * This isn't necessary to use when holding the timekeeper_lock or doing
+ * This isn't necessary to use when holding the tk_core.lock or doing
* a read of the fast-timekeeper tkrs (which is protected by its own locking
* and update logic).
*/
@@ -195,97 +226,6 @@ static inline u64 tk_clock_read(const struct tk_read_base *tkr)
return clock->read(clock);
}
-#ifdef CONFIG_DEBUG_TIMEKEEPING
-#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
-
-static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
-{
-
- u64 max_cycles = tk->tkr_mono.clock->max_cycles;
- const char *name = tk->tkr_mono.clock->name;
-
- if (offset > max_cycles) {
- printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
- offset, name, max_cycles);
- printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
- } else {
- if (offset > (max_cycles >> 1)) {
- printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
- offset, name, max_cycles >> 1);
- printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
- }
- }
-
- if (tk->underflow_seen) {
- if (jiffies - tk->last_warning > WARNING_FREQ) {
- printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
- printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
- printk_deferred(" Your kernel is probably still fine.\n");
- tk->last_warning = jiffies;
- }
- tk->underflow_seen = 0;
- }
-
- if (tk->overflow_seen) {
- if (jiffies - tk->last_warning > WARNING_FREQ) {
- printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
- printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
- printk_deferred(" Your kernel is probably still fine.\n");
- tk->last_warning = jiffies;
- }
- tk->overflow_seen = 0;
- }
-}
-
-static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles);
-
-static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr)
-{
- struct timekeeper *tk = &tk_core.timekeeper;
- u64 now, last, mask, max, delta;
- unsigned int seq;
-
- /*
- * Since we're called holding a seqcount, the data may shift
- * under us while we're doing the calculation. This can cause
- * false positives, since we'd note a problem but throw the
- * results away. So nest another seqcount here to atomically
- * grab the points we are checking with.
- */
- do {
- seq = read_seqcount_begin(&tk_core.seq);
- now = tk_clock_read(tkr);
- last = tkr->cycle_last;
- mask = tkr->mask;
- max = tkr->clock->max_cycles;
- } while (read_seqcount_retry(&tk_core.seq, seq));
-
- delta = clocksource_delta(now, last, mask);
-
- /*
- * Try to catch underflows by checking if we are seeing small
- * mask-relative negative values.
- */
- if (unlikely((~delta & mask) < (mask >> 3)))
- tk->underflow_seen = 1;
-
- /* Check for multiplication overflows */
- if (unlikely(delta > max))
- tk->overflow_seen = 1;
-
- /* timekeeping_cycles_to_ns() handles both under and overflow */
- return timekeeping_cycles_to_ns(tkr, now);
-}
-#else
-static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
-{
-}
-static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr)
-{
- BUG();
-}
-#endif
-
/**
* tk_setup_internals - Set up internals to use clocksource clock.
*
@@ -390,19 +330,11 @@ static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 c
return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift;
}
-static __always_inline u64 __timekeeping_get_ns(const struct tk_read_base *tkr)
+static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
{
return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr));
}
-static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
-{
- if (IS_ENABLED(CONFIG_DEBUG_TIMEKEEPING))
- return timekeeping_debug_get_ns(tkr);
-
- return __timekeeping_get_ns(tkr);
-}
-
/**
* update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
* @tkr: Timekeeping readout base from which we take the update
@@ -411,7 +343,7 @@ static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
* We want to use this from any context including NMI and tracing /
* instrumenting the timekeeping code itself.
*
- * Employ the latch technique; see @raw_write_seqcount_latch.
+ * Employ the latch technique; see @write_seqcount_latch.
*
* So if a NMI hits the update of base[0] then it will use base[1]
* which is still consistent. In the worst case this can result is a
@@ -424,16 +356,18 @@ static void update_fast_timekeeper(const struct tk_read_base *tkr,
struct tk_read_base *base = tkf->base;
/* Force readers off to base[1] */
- raw_write_seqcount_latch(&tkf->seq);
+ write_seqcount_latch_begin(&tkf->seq);
/* Update base[0] */
memcpy(base, tkr, sizeof(*base));
/* Force readers back to base[0] */
- raw_write_seqcount_latch(&tkf->seq);
+ write_seqcount_latch(&tkf->seq);
/* Update base[1] */
memcpy(base + 1, base, sizeof(*base));
+
+ write_seqcount_latch_end(&tkf->seq);
}
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
@@ -443,11 +377,11 @@ static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
u64 now;
do {
- seq = raw_read_seqcount_latch(&tkf->seq);
+ seq = read_seqcount_latch(&tkf->seq);
tkr = tkf->base + (seq & 0x01);
now = ktime_to_ns(tkr->base);
- now += __timekeeping_get_ns(tkr);
- } while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
+ now += timekeeping_get_ns(tkr);
+ } while (read_seqcount_latch_retry(&tkf->seq, seq));
return now;
}
@@ -517,7 +451,7 @@ EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
* timekeeping_inject_sleeptime64()
* __timekeeping_inject_sleeptime(tk, delta);
* timestamp();
- * timekeeping_update(tk, TK_CLEAR_NTP...);
+ * timekeeping_update_staged(tkd, TK_CLEAR_NTP...);
*
* (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
* partially updated. Since the tk->offs_boot update is a rare event, this
@@ -562,7 +496,7 @@ static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
tkr = tkf->base + (seq & 0x01);
basem = ktime_to_ns(tkr->base);
baser = ktime_to_ns(tkr->base_real);
- delta = __timekeeping_get_ns(tkr);
+ delta = timekeeping_get_ns(tkr);
} while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
if (mono)
@@ -676,13 +610,11 @@ static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
struct timekeeper *tk = &tk_core.timekeeper;
- unsigned long flags;
int ret;
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
+ guard(raw_spinlock_irqsave)(&tk_core.lock);
ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
update_pvclock_gtod(tk, true);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
return ret;
}
@@ -695,14 +627,8 @@ EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
*/
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
- unsigned long flags;
- int ret;
-
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
-
- return ret;
+ guard(raw_spinlock_irqsave)(&tk_core.lock);
+ return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
@@ -718,6 +644,18 @@ static inline void tk_update_leap_state(struct timekeeper *tk)
}
/*
+ * Leap state update for both shadow and the real timekeeper
+ * Separate to spare a full memcpy() of the timekeeper.
+ */
+static void tk_update_leap_state_all(struct tk_data *tkd)
+{
+ write_seqcount_begin(&tkd->seq);
+ tk_update_leap_state(&tkd->shadow_timekeeper);
+ tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime;
+ write_seqcount_end(&tkd->seq);
+}
+
+/*
* Update the ktime_t based scalar nsec members of the timekeeper
*/
static inline void tk_update_ktime_data(struct timekeeper *tk)
@@ -750,9 +688,30 @@ static inline void tk_update_ktime_data(struct timekeeper *tk)
tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
}
-/* must hold timekeeper_lock */
-static void timekeeping_update(struct timekeeper *tk, unsigned int action)
+/*
+ * Restore the shadow timekeeper from the real timekeeper.
+ */
+static void timekeeping_restore_shadow(struct tk_data *tkd)
{
+ lockdep_assert_held(&tkd->lock);
+ memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper));
+}
+
+static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action)
+{
+ struct timekeeper *tk = &tk_core.shadow_timekeeper;
+
+ lockdep_assert_held(&tkd->lock);
+
+ /*
+ * Block out readers before running the updates below because that
+ * updates VDSO and other time related infrastructure. Not blocking
+ * the readers might let a reader see time going backwards when
+ * reading from the VDSO after the VDSO update and then reading in
+ * the kernel from the timekeeper before that got updated.
+ */
+ write_seqcount_begin(&tkd->seq);
+
if (action & TK_CLEAR_NTP) {
tk->ntp_error = 0;
ntp_clear();
@@ -770,14 +729,17 @@ static void timekeeping_update(struct timekeeper *tk, unsigned int action)
if (action & TK_CLOCK_WAS_SET)
tk->clock_was_set_seq++;
+
/*
- * The mirroring of the data to the shadow-timekeeper needs
- * to happen last here to ensure we don't over-write the
- * timekeeper structure on the next update with stale data
+ * Update the real timekeeper.
+ *
+ * We could avoid this memcpy() by switching pointers, but that has
+ * the downside that the reader side does not longer benefit from
+ * the cacheline optimized data layout of the timekeeper and requires
+ * another indirection.
*/
- if (action & TK_MIRROR)
- memcpy(&shadow_timekeeper, &tk_core.timekeeper,
- sizeof(tk_core.timekeeper));
+ memcpy(&tkd->timekeeper, tk, sizeof(*tk));
+ write_seqcount_end(&tkd->seq);
}
/**
@@ -930,6 +892,14 @@ ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
unsigned int seq;
ktime_t tconv;
+ if (IS_ENABLED(CONFIG_64BIT)) {
+ /*
+ * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and
+ * tk_update_sleep_time().
+ */
+ return ktime_add(tmono, READ_ONCE(*offset));
+ }
+
do {
seq = read_seqcount_begin(&tk_core.seq);
tconv = ktime_add(tmono, *offset);
@@ -1060,6 +1030,7 @@ void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
unsigned int seq;
ktime_t base_raw;
ktime_t base_real;
+ ktime_t base_boot;
u64 nsec_raw;
u64 nsec_real;
u64 now;
@@ -1074,6 +1045,8 @@ void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
base_real = ktime_add(tk->tkr_mono.base,
tk_core.timekeeper.offs_real);
+ base_boot = ktime_add(tk->tkr_mono.base,
+ tk_core.timekeeper.offs_boot);
base_raw = tk->tkr_raw.base;
nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
@@ -1081,6 +1054,7 @@ void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
systime_snapshot->cycles = now;
systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
+ systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real);
systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
@@ -1440,45 +1414,35 @@ EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base);
*/
int do_settimeofday64(const struct timespec64 *ts)
{
- struct timekeeper *tk = &tk_core.timekeeper;
struct timespec64 ts_delta, xt;
- unsigned long flags;
- int ret = 0;
if (!timespec64_valid_settod(ts))
return -EINVAL;
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
+ scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
+ struct timekeeper *tks = &tk_core.shadow_timekeeper;
- timekeeping_forward_now(tk);
+ timekeeping_forward_now(tks);
- xt = tk_xtime(tk);
- ts_delta = timespec64_sub(*ts, xt);
+ xt = tk_xtime(tks);
+ ts_delta = timespec64_sub(*ts, xt);
- if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
- ret = -EINVAL;
- goto out;
- }
-
- tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
-
- tk_set_xtime(tk, ts);
-out:
- timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
+ if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) {
+ timekeeping_restore_shadow(&tk_core);
+ return -EINVAL;
+ }
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+ tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta));
+ tk_set_xtime(tks, ts);
+ timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
+ }
/* Signal hrtimers about time change */
clock_was_set(CLOCK_SET_WALL);
- if (!ret) {
- audit_tk_injoffset(ts_delta);
- add_device_randomness(ts, sizeof(*ts));
- }
-
- return ret;
+ audit_tk_injoffset(ts_delta);
+ add_device_randomness(ts, sizeof(*ts));
+ return 0;
}
EXPORT_SYMBOL(do_settimeofday64);
@@ -1490,40 +1454,31 @@ EXPORT_SYMBOL(do_settimeofday64);
*/
static int timekeeping_inject_offset(const struct timespec64 *ts)
{
- struct timekeeper *tk = &tk_core.timekeeper;
- unsigned long flags;
- struct timespec64 tmp;
- int ret = 0;
-
if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
return -EINVAL;
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
-
- timekeeping_forward_now(tk);
-
- /* Make sure the proposed value is valid */
- tmp = timespec64_add(tk_xtime(tk), *ts);
- if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
- !timespec64_valid_settod(&tmp)) {
- ret = -EINVAL;
- goto error;
- }
+ scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
+ struct timekeeper *tks = &tk_core.shadow_timekeeper;
+ struct timespec64 tmp;
- tk_xtime_add(tk, ts);
- tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
+ timekeeping_forward_now(tks);
-error: /* even if we error out, we forwarded the time, so call update */
- timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
+ /* Make sure the proposed value is valid */
+ tmp = timespec64_add(tk_xtime(tks), *ts);
+ if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 ||
+ !timespec64_valid_settod(&tmp)) {
+ timekeeping_restore_shadow(&tk_core);
+ return -EINVAL;
+ }
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+ tk_xtime_add(tks, ts);
+ tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts));
+ timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
+ }
/* Signal hrtimers about time change */
clock_was_set(CLOCK_SET_WALL);
-
- return ret;
+ return 0;
}
/*
@@ -1576,43 +1531,34 @@ static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
*/
static int change_clocksource(void *data)
{
- struct timekeeper *tk = &tk_core.timekeeper;
- struct clocksource *new, *old = NULL;
- unsigned long flags;
- bool change = false;
-
- new = (struct clocksource *) data;
+ struct clocksource *new = data, *old = NULL;
/*
- * If the cs is in module, get a module reference. Succeeds
- * for built-in code (owner == NULL) as well.
+ * If the clocksource is in a module, get a module reference.
+ * Succeeds for built-in code (owner == NULL) as well. Abort if the
+ * reference can't be acquired.
*/
- if (try_module_get(new->owner)) {
- if (!new->enable || new->enable(new) == 0)
- change = true;
- else
- module_put(new->owner);
- }
-
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
-
- timekeeping_forward_now(tk);
+ if (!try_module_get(new->owner))
+ return 0;
- if (change) {
- old = tk->tkr_mono.clock;
- tk_setup_internals(tk, new);
+ /* Abort if the device can't be enabled */
+ if (new->enable && new->enable(new) != 0) {
+ module_put(new->owner);
+ return 0;
}
- timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
+ scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
+ struct timekeeper *tks = &tk_core.shadow_timekeeper;
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+ timekeeping_forward_now(tks);
+ old = tks->tkr_mono.clock;
+ tk_setup_internals(tks, new);
+ timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
+ }
if (old) {
if (old->disable)
old->disable(old);
-
module_put(old->owner);
}
@@ -1737,6 +1683,12 @@ read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
*boot_offset = ns_to_timespec64(local_clock());
}
+static __init void tkd_basic_setup(struct tk_data *tkd)
+{
+ raw_spin_lock_init(&tkd->lock);
+ seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock);
+}
+
/*
* Flag reflecting whether timekeeping_resume() has injected sleeptime.
*
@@ -1761,9 +1713,10 @@ static bool persistent_clock_exists;
void __init timekeeping_init(void)
{
struct timespec64 wall_time, boot_offset, wall_to_mono;
- struct timekeeper *tk = &tk_core.timekeeper;
+ struct timekeeper *tks = &tk_core.shadow_timekeeper;
struct clocksource *clock;
- unsigned long flags;
+
+ tkd_basic_setup(&tk_core);
read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
if (timespec64_valid_settod(&wall_time) &&
@@ -1783,24 +1736,21 @@ void __init timekeeping_init(void)
*/
wall_to_mono = timespec64_sub(boot_offset, wall_time);
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
+ guard(raw_spinlock_irqsave)(&tk_core.lock);
+
ntp_init();
clock = clocksource_default_clock();
if (clock->enable)
clock->enable(clock);
- tk_setup_internals(tk, clock);
+ tk_setup_internals(tks, clock);
- tk_set_xtime(tk, &wall_time);
- tk->raw_sec = 0;
+ tk_set_xtime(tks, &wall_time);
+ tks->raw_sec = 0;
- tk_set_wall_to_mono(tk, wall_to_mono);
+ tk_set_wall_to_mono(tks, wall_to_mono);
- timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
-
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+ timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
}
/* time in seconds when suspend began for persistent clock */
@@ -1878,22 +1828,14 @@ bool timekeeping_rtc_skipsuspend(void)
*/
void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
{
- struct timekeeper *tk = &tk_core.timekeeper;
- unsigned long flags;
-
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
-
- suspend_timing_needed = false;
+ scoped_guard(raw_spinlock_irqsave, &tk_core.lock) {
+ struct timekeeper *tks = &tk_core.shadow_timekeeper;
- timekeeping_forward_now(tk);
-
- __timekeeping_inject_sleeptime(tk, delta);
-
- timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
-
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+ suspend_timing_needed = false;
+ timekeeping_forward_now(tks);
+ __timekeeping_inject_sleeptime(tks, delta);
+ timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
+ }
/* Signal hrtimers about time change */
clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
@@ -1905,20 +1847,19 @@ void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
*/
void timekeeping_resume(void)
{
- struct timekeeper *tk = &tk_core.timekeeper;
- struct clocksource *clock = tk->tkr_mono.clock;
- unsigned long flags;
+ struct timekeeper *tks = &tk_core.shadow_timekeeper;
+ struct clocksource *clock = tks->tkr_mono.clock;
struct timespec64 ts_new, ts_delta;
- u64 cycle_now, nsec;
bool inject_sleeptime = false;
+ u64 cycle_now, nsec;
+ unsigned long flags;
read_persistent_clock64(&ts_new);
clockevents_resume();
clocksource_resume();
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
+ raw_spin_lock_irqsave(&tk_core.lock, flags);
/*
* After system resumes, we need to calculate the suspended time and
@@ -1932,7 +1873,7 @@ void timekeeping_resume(void)
* The less preferred source will only be tried if there is no better
* usable source. The rtc part is handled separately in rtc core code.
*/
- cycle_now = tk_clock_read(&tk->tkr_mono);
+ cycle_now = tk_clock_read(&tks->tkr_mono);
nsec = clocksource_stop_suspend_timing(clock, cycle_now);
if (nsec > 0) {
ts_delta = ns_to_timespec64(nsec);
@@ -1944,18 +1885,17 @@ void timekeeping_resume(void)
if (inject_sleeptime) {
suspend_timing_needed = false;
- __timekeeping_inject_sleeptime(tk, &ts_delta);
+ __timekeeping_inject_sleeptime(tks, &ts_delta);
}
/* Re-base the last cycle value */
- tk->tkr_mono.cycle_last = cycle_now;
- tk->tkr_raw.cycle_last = cycle_now;
+ tks->tkr_mono.cycle_last = cycle_now;
+ tks->tkr_raw.cycle_last = cycle_now;
- tk->ntp_error = 0;
+ tks->ntp_error = 0;
timekeeping_suspended = 0;
- timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+ timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
+ raw_spin_unlock_irqrestore(&tk_core.lock, flags);
touch_softlockup_watchdog();
@@ -1967,11 +1907,11 @@ void timekeeping_resume(void)
int timekeeping_suspend(void)
{
- struct timekeeper *tk = &tk_core.timekeeper;
- unsigned long flags;
- struct timespec64 delta, delta_delta;
- static struct timespec64 old_delta;
+ struct timekeeper *tks = &tk_core.shadow_timekeeper;
+ struct timespec64 delta, delta_delta;
+ static struct timespec64 old_delta;
struct clocksource *curr_clock;
+ unsigned long flags;
u64 cycle_now;
read_persistent_clock64(&timekeeping_suspend_time);
@@ -1986,9 +1926,8 @@ int timekeeping_suspend(void)
suspend_timing_needed = true;
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
- timekeeping_forward_now(tk);
+ raw_spin_lock_irqsave(&tk_core.lock, flags);
+ timekeeping_forward_now(tks);
timekeeping_suspended = 1;
/*
@@ -1996,8 +1935,8 @@ int timekeeping_suspend(void)
* just read from the current clocksource. Save this to potentially
* use in suspend timing.
*/
- curr_clock = tk->tkr_mono.clock;
- cycle_now = tk->tkr_mono.cycle_last;
+ curr_clock = tks->tkr_mono.clock;
+ cycle_now = tks->tkr_mono.cycle_last;
clocksource_start_suspend_timing(curr_clock, cycle_now);
if (persistent_clock_exists) {
@@ -2007,7 +1946,7 @@ int timekeeping_suspend(void)
* try to compensate so the difference in system time
* and persistent_clock time stays close to constant.
*/
- delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
+ delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time);
delta_delta = timespec64_sub(delta, old_delta);
if (abs(delta_delta.tv_sec) >= 2) {
/*
@@ -2022,10 +1961,9 @@ int timekeeping_suspend(void)
}
}
- timekeeping_update(tk, TK_MIRROR);
- halt_fast_timekeeper(tk);
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+ timekeeping_update_from_shadow(&tk_core, 0);
+ halt_fast_timekeeper(tks);
+ raw_spin_unlock_irqrestore(&tk_core.lock, flags);
tick_suspend();
clocksource_suspend();
@@ -2130,16 +2068,17 @@ static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
*/
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
+ u64 ntp_tl = ntp_tick_length();
u32 mult;
/*
* Determine the multiplier from the current NTP tick length.
* Avoid expensive division when the tick length doesn't change.
*/
- if (likely(tk->ntp_tick == ntp_tick_length())) {
+ if (likely(tk->ntp_tick == ntp_tl)) {
mult = tk->tkr_mono.mult - tk->ntp_err_mult;
} else {
- tk->ntp_tick = ntp_tick_length();
+ tk->ntp_tick = ntp_tl;
mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
tk->xtime_remainder, tk->cycle_interval);
}
@@ -2278,28 +2217,24 @@ static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
*/
static bool timekeeping_advance(enum timekeeping_adv_mode mode)
{
+ struct timekeeper *tk = &tk_core.shadow_timekeeper;
struct timekeeper *real_tk = &tk_core.timekeeper;
- struct timekeeper *tk = &shadow_timekeeper;
- u64 offset;
- int shift = 0, maxshift;
unsigned int clock_set = 0;
- unsigned long flags;
+ int shift = 0, maxshift;
+ u64 offset;
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
+ guard(raw_spinlock_irqsave)(&tk_core.lock);
/* Make sure we're fully resumed: */
if (unlikely(timekeeping_suspended))
- goto out;
+ return false;
offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
/* Check if there's really nothing to do */
if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
- goto out;
-
- /* Do some additional sanity checking */
- timekeeping_check_update(tk, offset);
+ return false;
/*
* With NO_HZ we may have to accumulate many cycle_intervals
@@ -2315,8 +2250,7 @@ static bool timekeeping_advance(enum timekeeping_adv_mode mode)
maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
shift = min(shift, maxshift);
while (offset >= tk->cycle_interval) {
- offset = logarithmic_accumulation(tk, offset, shift,
- &clock_set);
+ offset = logarithmic_accumulation(tk, offset, shift, &clock_set);
if (offset < tk->cycle_interval<<shift)
shift--;
}
@@ -2330,23 +2264,7 @@ static bool timekeeping_advance(enum timekeeping_adv_mode mode)
*/
clock_set |= accumulate_nsecs_to_secs(tk);
- write_seqcount_begin(&tk_core.seq);
- /*
- * Update the real timekeeper.
- *
- * We could avoid this memcpy by switching pointers, but that
- * requires changes to all other timekeeper usage sites as
- * well, i.e. move the timekeeper pointer getter into the
- * spinlocked/seqcount protected sections. And we trade this
- * memcpy under the tk_core.seq against one before we start
- * updating.
- */
- timekeeping_update(tk, clock_set);
- memcpy(real_tk, tk, sizeof(*tk));
- /* The memcpy must come last. Do not put anything here! */
- write_seqcount_end(&tk_core.seq);
-out:
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+ timekeeping_update_from_shadow(&tk_core, clock_set);
return !!clock_set;
}
@@ -2394,6 +2312,94 @@ void ktime_get_coarse_real_ts64(struct timespec64 *ts)
}
EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
+/**
+ * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor
+ * @ts: timespec64 to be filled
+ *
+ * Fetch the global mg_floor value, convert it to realtime and compare it
+ * to the current coarse-grained time. Fill @ts with whichever is
+ * latest. Note that this is a filesystem-specific interface and should be
+ * avoided outside of that context.
+ */
+void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts)
+{
+ struct timekeeper *tk = &tk_core.timekeeper;
+ u64 floor = atomic64_read(&mg_floor);
+ ktime_t f_real, offset, coarse;
+ unsigned int seq;
+
+ do {
+ seq = read_seqcount_begin(&tk_core.seq);
+ *ts = tk_xtime(tk);
+ offset = tk_core.timekeeper.offs_real;
+ } while (read_seqcount_retry(&tk_core.seq, seq));
+
+ coarse = timespec64_to_ktime(*ts);
+ f_real = ktime_add(floor, offset);
+ if (ktime_after(f_real, coarse))
+ *ts = ktime_to_timespec64(f_real);
+}
+
+/**
+ * ktime_get_real_ts64_mg - attempt to update floor value and return result
+ * @ts: pointer to the timespec to be set
+ *
+ * Get a monotonic fine-grained time value and attempt to swap it into
+ * mg_floor. If that succeeds then accept the new floor value. If it fails
+ * then another task raced in during the interim time and updated the
+ * floor. Since any update to the floor must be later than the previous
+ * floor, either outcome is acceptable.
+ *
+ * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(),
+ * and determining that the resulting coarse-grained timestamp did not effect
+ * a change in ctime. Any more recent floor value would effect a change to
+ * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure.
+ *
+ * @ts will be filled with the latest floor value, regardless of the outcome of
+ * the cmpxchg. Note that this is a filesystem specific interface and should be
+ * avoided outside of that context.
+ */
+void ktime_get_real_ts64_mg(struct timespec64 *ts)
+{
+ struct timekeeper *tk = &tk_core.timekeeper;
+ ktime_t old = atomic64_read(&mg_floor);
+ ktime_t offset, mono;
+ unsigned int seq;
+ u64 nsecs;
+
+ do {
+ seq = read_seqcount_begin(&tk_core.seq);
+
+ ts->tv_sec = tk->xtime_sec;
+ mono = tk->tkr_mono.base;
+ nsecs = timekeeping_get_ns(&tk->tkr_mono);
+ offset = tk_core.timekeeper.offs_real;
+ } while (read_seqcount_retry(&tk_core.seq, seq));
+
+ mono = ktime_add_ns(mono, nsecs);
+
+ /*
+ * Attempt to update the floor with the new time value. As any
+ * update must be later then the existing floor, and would effect
+ * a change to ctime from the perspective of the current task,
+ * accept the resulting floor value regardless of the outcome of
+ * the swap.
+ */
+ if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) {
+ ts->tv_nsec = 0;
+ timespec64_add_ns(ts, nsecs);
+ timekeeping_inc_mg_floor_swaps();
+ } else {
+ /*
+ * Another task changed mg_floor since "old" was fetched.
+ * "old" has been updated with the latest value of "mg_floor".
+ * That value is newer than the previous floor value, which
+ * is enough to effect a change to ctime. Accept it.
+ */
+ *ts = ktime_to_timespec64(ktime_add(old, offset));
+ }
+}
+
void ktime_get_coarse_ts64(struct timespec64 *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
@@ -2551,13 +2557,10 @@ EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
*/
int do_adjtimex(struct __kernel_timex *txc)
{
- struct timekeeper *tk = &tk_core.timekeeper;
struct audit_ntp_data ad;
bool offset_set = false;
bool clock_set = false;
struct timespec64 ts;
- unsigned long flags;
- s32 orig_tai, tai;
int ret;
/* Validate the data before disabling interrupts */
@@ -2568,6 +2571,7 @@ int do_adjtimex(struct __kernel_timex *txc)
if (txc->modes & ADJ_SETOFFSET) {
struct timespec64 delta;
+
delta.tv_sec = txc->time.tv_sec;
delta.tv_nsec = txc->time.tv_usec;
if (!(txc->modes & ADJ_NANO))
@@ -2585,21 +2589,21 @@ int do_adjtimex(struct __kernel_timex *txc)
ktime_get_real_ts64(&ts);
add_device_randomness(&ts, sizeof(ts));
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
+ scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
+ struct timekeeper *tks = &tk_core.shadow_timekeeper;
+ s32 orig_tai, tai;
- orig_tai = tai = tk->tai_offset;
- ret = __do_adjtimex(txc, &ts, &tai, &ad);
+ orig_tai = tai = tks->tai_offset;
+ ret = __do_adjtimex(txc, &ts, &tai, &ad);
- if (tai != orig_tai) {
- __timekeeping_set_tai_offset(tk, tai);
- timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
- clock_set = true;
+ if (tai != orig_tai) {
+ __timekeeping_set_tai_offset(tks, tai);
+ timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
+ clock_set = true;
+ } else {
+ tk_update_leap_state_all(&tk_core);
+ }
}
- tk_update_leap_state(tk);
-
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
audit_ntp_log(&ad);
@@ -2623,15 +2627,8 @@ int do_adjtimex(struct __kernel_timex *txc)
*/
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
{
- unsigned long flags;
-
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
-
+ guard(raw_spinlock_irqsave)(&tk_core.lock);
__hardpps(phase_ts, raw_ts);
-
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
}
EXPORT_SYMBOL(hardpps);
#endif /* CONFIG_NTP_PPS */
diff --git a/kernel/time/timekeeping_debug.c b/kernel/time/timekeeping_debug.c
index b73e8850e58d..badeb222eab9 100644
--- a/kernel/time/timekeeping_debug.c
+++ b/kernel/time/timekeeping_debug.c
@@ -17,6 +17,9 @@
#define NUM_BINS 32
+/* Incremented every time mg_floor is updated */
+DEFINE_PER_CPU(unsigned long, timekeeping_mg_floor_swaps);
+
static unsigned int sleep_time_bin[NUM_BINS] = {0};
static int tk_debug_sleep_time_show(struct seq_file *s, void *data)
@@ -53,3 +56,13 @@ void tk_debug_account_sleep_time(const struct timespec64 *t)
(s64)t->tv_sec, t->tv_nsec / NSEC_PER_MSEC);
}
+unsigned long timekeeping_get_mg_floor_swaps(void)
+{
+ unsigned long sum = 0;
+ int cpu;
+
+ for_each_possible_cpu(cpu)
+ sum += data_race(per_cpu(timekeeping_mg_floor_swaps, cpu));
+
+ return sum;
+}
diff --git a/kernel/time/timekeeping_internal.h b/kernel/time/timekeeping_internal.h
index 4ca2787d1642..63e600e943a7 100644
--- a/kernel/time/timekeeping_internal.h
+++ b/kernel/time/timekeeping_internal.h
@@ -10,12 +10,26 @@
* timekeeping debug functions
*/
#ifdef CONFIG_DEBUG_FS
+
+DECLARE_PER_CPU(unsigned long, timekeeping_mg_floor_swaps);
+
+static inline void timekeeping_inc_mg_floor_swaps(void)
+{
+ this_cpu_inc(timekeeping_mg_floor_swaps);
+}
+
extern void tk_debug_account_sleep_time(const struct timespec64 *t);
+
#else
+
#define tk_debug_account_sleep_time(x)
+
+static inline void timekeeping_inc_mg_floor_swaps(void)
+{
+}
+
#endif
-#ifdef CONFIG_CLOCKSOURCE_VALIDATE_LAST_CYCLE
static inline u64 clocksource_delta(u64 now, u64 last, u64 mask)
{
u64 ret = (now - last) & mask;
@@ -26,14 +40,9 @@ static inline u64 clocksource_delta(u64 now, u64 last, u64 mask)
*/
return ret & ~(mask >> 1) ? 0 : ret;
}
-#else
-static inline u64 clocksource_delta(u64 now, u64 last, u64 mask)
-{
- return (now - last) & mask;
-}
-#endif
/* Semi public for serialization of non timekeeper VDSO updates. */
-extern raw_spinlock_t timekeeper_lock;
+unsigned long timekeeper_lock_irqsave(void);
+void timekeeper_unlock_irqrestore(unsigned long flags);
#endif /* _TIMEKEEPING_INTERNAL_H */
diff --git a/kernel/time/timer.c b/kernel/time/timer.c
index 0fc9d066a7be..a5860bf6d16f 100644
--- a/kernel/time/timer.c
+++ b/kernel/time/timer.c
@@ -37,7 +37,6 @@
#include <linux/tick.h>
#include <linux/kallsyms.h>
#include <linux/irq_work.h>
-#include <linux/sched/signal.h>
#include <linux/sched/sysctl.h>
#include <linux/sched/nohz.h>
#include <linux/sched/debug.h>
@@ -2422,7 +2421,8 @@ static inline void __run_timers(struct timer_base *base)
static void __run_timer_base(struct timer_base *base)
{
- if (time_before(jiffies, base->next_expiry))
+ /* Can race against a remote CPU updating next_expiry under the lock */
+ if (time_before(jiffies, READ_ONCE(base->next_expiry)))
return;
timer_base_lock_expiry(base);
@@ -2499,7 +2499,7 @@ static void run_local_timers(void)
*/
if (time_after_eq(jiffies, READ_ONCE(base->next_expiry)) ||
(i == BASE_DEF && tmigr_requires_handle_remote())) {
- raise_softirq(TIMER_SOFTIRQ);
+ raise_timer_softirq(TIMER_SOFTIRQ);
return;
}
}
@@ -2526,141 +2526,6 @@ void update_process_times(int user_tick)
run_posix_cpu_timers();
}
-/*
- * Since schedule_timeout()'s timer is defined on the stack, it must store
- * the target task on the stack as well.
- */
-struct process_timer {
- struct timer_list timer;
- struct task_struct *task;
-};
-
-static void process_timeout(struct timer_list *t)
-{
- struct process_timer *timeout = from_timer(timeout, t, timer);
-
- wake_up_process(timeout->task);
-}
-
-/**
- * schedule_timeout - sleep until timeout
- * @timeout: timeout value in jiffies
- *
- * Make the current task sleep until @timeout jiffies have elapsed.
- * The function behavior depends on the current task state
- * (see also set_current_state() description):
- *
- * %TASK_RUNNING - the scheduler is called, but the task does not sleep
- * at all. That happens because sched_submit_work() does nothing for
- * tasks in %TASK_RUNNING state.
- *
- * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
- * pass before the routine returns unless the current task is explicitly
- * woken up, (e.g. by wake_up_process()).
- *
- * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
- * delivered to the current task or the current task is explicitly woken
- * up.
- *
- * The current task state is guaranteed to be %TASK_RUNNING when this
- * routine returns.
- *
- * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
- * the CPU away without a bound on the timeout. In this case the return
- * value will be %MAX_SCHEDULE_TIMEOUT.
- *
- * Returns 0 when the timer has expired otherwise the remaining time in
- * jiffies will be returned. In all cases the return value is guaranteed
- * to be non-negative.
- */
-signed long __sched schedule_timeout(signed long timeout)
-{
- struct process_timer timer;
- unsigned long expire;
-
- switch (timeout)
- {
- case MAX_SCHEDULE_TIMEOUT:
- /*
- * These two special cases are useful to be comfortable
- * in the caller. Nothing more. We could take
- * MAX_SCHEDULE_TIMEOUT from one of the negative value
- * but I' d like to return a valid offset (>=0) to allow
- * the caller to do everything it want with the retval.
- */
- schedule();
- goto out;
- default:
- /*
- * Another bit of PARANOID. Note that the retval will be
- * 0 since no piece of kernel is supposed to do a check
- * for a negative retval of schedule_timeout() (since it
- * should never happens anyway). You just have the printk()
- * that will tell you if something is gone wrong and where.
- */
- if (timeout < 0) {
- printk(KERN_ERR "schedule_timeout: wrong timeout "
- "value %lx\n", timeout);
- dump_stack();
- __set_current_state(TASK_RUNNING);
- goto out;
- }
- }
-
- expire = timeout + jiffies;
-
- timer.task = current;
- timer_setup_on_stack(&timer.timer, process_timeout, 0);
- __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
- schedule();
- del_timer_sync(&timer.timer);
-
- /* Remove the timer from the object tracker */
- destroy_timer_on_stack(&timer.timer);
-
- timeout = expire - jiffies;
-
- out:
- return timeout < 0 ? 0 : timeout;
-}
-EXPORT_SYMBOL(schedule_timeout);
-
-/*
- * We can use __set_current_state() here because schedule_timeout() calls
- * schedule() unconditionally.
- */
-signed long __sched schedule_timeout_interruptible(signed long timeout)
-{
- __set_current_state(TASK_INTERRUPTIBLE);
- return schedule_timeout(timeout);
-}
-EXPORT_SYMBOL(schedule_timeout_interruptible);
-
-signed long __sched schedule_timeout_killable(signed long timeout)
-{
- __set_current_state(TASK_KILLABLE);
- return schedule_timeout(timeout);
-}
-EXPORT_SYMBOL(schedule_timeout_killable);
-
-signed long __sched schedule_timeout_uninterruptible(signed long timeout)
-{
- __set_current_state(TASK_UNINTERRUPTIBLE);
- return schedule_timeout(timeout);
-}
-EXPORT_SYMBOL(schedule_timeout_uninterruptible);
-
-/*
- * Like schedule_timeout_uninterruptible(), except this task will not contribute
- * to load average.
- */
-signed long __sched schedule_timeout_idle(signed long timeout)
-{
- __set_current_state(TASK_IDLE);
- return schedule_timeout(timeout);
-}
-EXPORT_SYMBOL(schedule_timeout_idle);
-
#ifdef CONFIG_HOTPLUG_CPU
static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
{
@@ -2757,59 +2622,3 @@ void __init init_timers(void)
posix_cputimers_init_work();
open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
}
-
-/**
- * msleep - sleep safely even with waitqueue interruptions
- * @msecs: Time in milliseconds to sleep for
- */
-void msleep(unsigned int msecs)
-{
- unsigned long timeout = msecs_to_jiffies(msecs);
-
- while (timeout)
- timeout = schedule_timeout_uninterruptible(timeout);
-}
-
-EXPORT_SYMBOL(msleep);
-
-/**
- * msleep_interruptible - sleep waiting for signals
- * @msecs: Time in milliseconds to sleep for
- */
-unsigned long msleep_interruptible(unsigned int msecs)
-{
- unsigned long timeout = msecs_to_jiffies(msecs);
-
- while (timeout && !signal_pending(current))
- timeout = schedule_timeout_interruptible(timeout);
- return jiffies_to_msecs(timeout);
-}
-
-EXPORT_SYMBOL(msleep_interruptible);
-
-/**
- * usleep_range_state - Sleep for an approximate time in a given state
- * @min: Minimum time in usecs to sleep
- * @max: Maximum time in usecs to sleep
- * @state: State of the current task that will be while sleeping
- *
- * In non-atomic context where the exact wakeup time is flexible, use
- * usleep_range_state() instead of udelay(). The sleep improves responsiveness
- * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
- * power usage by allowing hrtimers to take advantage of an already-
- * scheduled interrupt instead of scheduling a new one just for this sleep.
- */
-void __sched usleep_range_state(unsigned long min, unsigned long max,
- unsigned int state)
-{
- ktime_t exp = ktime_add_us(ktime_get(), min);
- u64 delta = (u64)(max - min) * NSEC_PER_USEC;
-
- for (;;) {
- __set_current_state(state);
- /* Do not return before the requested sleep time has elapsed */
- if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
- break;
- }
-}
-EXPORT_SYMBOL(usleep_range_state);
diff --git a/kernel/time/vsyscall.c b/kernel/time/vsyscall.c
index 9193d6133e5d..05d383143165 100644
--- a/kernel/time/vsyscall.c
+++ b/kernel/time/vsyscall.c
@@ -119,7 +119,7 @@ void update_vsyscall(struct timekeeper *tk)
if (clock_mode != VDSO_CLOCKMODE_NONE)
update_vdso_data(vdata, tk);
- __arch_update_vsyscall(vdata, tk);
+ __arch_update_vsyscall(vdata);
vdso_write_end(vdata);
@@ -151,9 +151,8 @@ void update_vsyscall_tz(void)
unsigned long vdso_update_begin(void)
{
struct vdso_data *vdata = __arch_get_k_vdso_data();
- unsigned long flags;
+ unsigned long flags = timekeeper_lock_irqsave();
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
vdso_write_begin(vdata);
return flags;
}
@@ -172,5 +171,5 @@ void vdso_update_end(unsigned long flags)
vdso_write_end(vdata);
__arch_sync_vdso_data(vdata);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+ timekeeper_unlock_irqrestore(flags);
}
diff --git a/kernel/trace/Kconfig b/kernel/trace/Kconfig
index 721c3b221048..74c2b1d43bb9 100644
--- a/kernel/trace/Kconfig
+++ b/kernel/trace/Kconfig
@@ -242,6 +242,16 @@ config FUNCTION_GRAPH_RETVAL
enable it via the trace option funcgraph-retval.
See Documentation/trace/ftrace.rst
+config FUNCTION_GRAPH_RETADDR
+ bool "Kernel Function Graph Return Address"
+ depends on FUNCTION_GRAPH_TRACER
+ default n
+ help
+ Support recording and printing the function return address when
+ using function graph tracer. It can be helpful to locate code line that
+ the function is called. This feature is off by default, and you can
+ enable it via the trace option funcgraph-retaddr.
+
config DYNAMIC_FTRACE
bool "enable/disable function tracing dynamically"
depends on FUNCTION_TRACER
diff --git a/kernel/trace/bpf_trace.c b/kernel/trace/bpf_trace.c
index 630b763e5240..949a3870946c 100644
--- a/kernel/trace/bpf_trace.c
+++ b/kernel/trace/bpf_trace.c
@@ -802,6 +802,8 @@ struct send_signal_irq_work {
struct task_struct *task;
u32 sig;
enum pid_type type;
+ bool has_siginfo;
+ struct kernel_siginfo info;
};
static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
@@ -809,27 +811,46 @@ static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
static void do_bpf_send_signal(struct irq_work *entry)
{
struct send_signal_irq_work *work;
+ struct kernel_siginfo *siginfo;
work = container_of(entry, struct send_signal_irq_work, irq_work);
- group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
+ siginfo = work->has_siginfo ? &work->info : SEND_SIG_PRIV;
+
+ group_send_sig_info(work->sig, siginfo, work->task, work->type);
put_task_struct(work->task);
}
-static int bpf_send_signal_common(u32 sig, enum pid_type type)
+static int bpf_send_signal_common(u32 sig, enum pid_type type, struct task_struct *task, u64 value)
{
struct send_signal_irq_work *work = NULL;
+ struct kernel_siginfo info;
+ struct kernel_siginfo *siginfo;
+
+ if (!task) {
+ task = current;
+ siginfo = SEND_SIG_PRIV;
+ } else {
+ clear_siginfo(&info);
+ info.si_signo = sig;
+ info.si_errno = 0;
+ info.si_code = SI_KERNEL;
+ info.si_pid = 0;
+ info.si_uid = 0;
+ info.si_value.sival_ptr = (void *)(unsigned long)value;
+ siginfo = &info;
+ }
/* Similar to bpf_probe_write_user, task needs to be
* in a sound condition and kernel memory access be
* permitted in order to send signal to the current
* task.
*/
- if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
+ if (unlikely(task->flags & (PF_KTHREAD | PF_EXITING)))
return -EPERM;
if (unlikely(!nmi_uaccess_okay()))
return -EPERM;
/* Task should not be pid=1 to avoid kernel panic. */
- if (unlikely(is_global_init(current)))
+ if (unlikely(is_global_init(task)))
return -EPERM;
if (irqs_disabled()) {
@@ -847,19 +868,22 @@ static int bpf_send_signal_common(u32 sig, enum pid_type type)
* to the irq_work. The current task may change when queued
* irq works get executed.
*/
- work->task = get_task_struct(current);
+ work->task = get_task_struct(task);
+ work->has_siginfo = siginfo == &info;
+ if (work->has_siginfo)
+ copy_siginfo(&work->info, &info);
work->sig = sig;
work->type = type;
irq_work_queue(&work->irq_work);
return 0;
}
- return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
+ return group_send_sig_info(sig, siginfo, task, type);
}
BPF_CALL_1(bpf_send_signal, u32, sig)
{
- return bpf_send_signal_common(sig, PIDTYPE_TGID);
+ return bpf_send_signal_common(sig, PIDTYPE_TGID, NULL, 0);
}
static const struct bpf_func_proto bpf_send_signal_proto = {
@@ -871,7 +895,7 @@ static const struct bpf_func_proto bpf_send_signal_proto = {
BPF_CALL_1(bpf_send_signal_thread, u32, sig)
{
- return bpf_send_signal_common(sig, PIDTYPE_PID);
+ return bpf_send_signal_common(sig, PIDTYPE_PID, NULL, 0);
}
static const struct bpf_func_proto bpf_send_signal_thread_proto = {
@@ -1557,6 +1581,17 @@ static inline bool is_kprobe_session(const struct bpf_prog *prog)
return prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION;
}
+static inline bool is_uprobe_multi(const struct bpf_prog *prog)
+{
+ return prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI ||
+ prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION;
+}
+
+static inline bool is_uprobe_session(const struct bpf_prog *prog)
+{
+ return prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION;
+}
+
static const struct bpf_func_proto *
kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
{
@@ -1574,13 +1609,13 @@ kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
case BPF_FUNC_get_func_ip:
if (is_kprobe_multi(prog))
return &bpf_get_func_ip_proto_kprobe_multi;
- if (prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI)
+ if (is_uprobe_multi(prog))
return &bpf_get_func_ip_proto_uprobe_multi;
return &bpf_get_func_ip_proto_kprobe;
case BPF_FUNC_get_attach_cookie:
if (is_kprobe_multi(prog))
return &bpf_get_attach_cookie_proto_kmulti;
- if (prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI)
+ if (is_uprobe_multi(prog))
return &bpf_get_attach_cookie_proto_umulti;
return &bpf_get_attach_cookie_proto_trace;
default:
@@ -3072,6 +3107,7 @@ struct bpf_uprobe {
u64 cookie;
struct uprobe *uprobe;
struct uprobe_consumer consumer;
+ bool session;
};
struct bpf_uprobe_multi_link {
@@ -3084,7 +3120,7 @@ struct bpf_uprobe_multi_link {
};
struct bpf_uprobe_multi_run_ctx {
- struct bpf_run_ctx run_ctx;
+ struct bpf_session_run_ctx session_ctx;
unsigned long entry_ip;
struct bpf_uprobe *uprobe;
};
@@ -3195,17 +3231,22 @@ static const struct bpf_link_ops bpf_uprobe_multi_link_lops = {
static int uprobe_prog_run(struct bpf_uprobe *uprobe,
unsigned long entry_ip,
- struct pt_regs *regs)
+ struct pt_regs *regs,
+ bool is_return, void *data)
{
struct bpf_uprobe_multi_link *link = uprobe->link;
struct bpf_uprobe_multi_run_ctx run_ctx = {
+ .session_ctx = {
+ .is_return = is_return,
+ .data = data,
+ },
.entry_ip = entry_ip,
.uprobe = uprobe,
};
struct bpf_prog *prog = link->link.prog;
bool sleepable = prog->sleepable;
struct bpf_run_ctx *old_run_ctx;
- int err = 0;
+ int err;
if (link->task && !same_thread_group(current, link->task))
return 0;
@@ -3217,7 +3258,7 @@ static int uprobe_prog_run(struct bpf_uprobe *uprobe,
migrate_disable();
- old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
+ old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx);
err = bpf_prog_run(link->link.prog, regs);
bpf_reset_run_ctx(old_run_ctx);
@@ -3240,28 +3281,36 @@ uprobe_multi_link_filter(struct uprobe_consumer *con, struct mm_struct *mm)
}
static int
-uprobe_multi_link_handler(struct uprobe_consumer *con, struct pt_regs *regs)
+uprobe_multi_link_handler(struct uprobe_consumer *con, struct pt_regs *regs,
+ __u64 *data)
{
struct bpf_uprobe *uprobe;
+ int ret;
uprobe = container_of(con, struct bpf_uprobe, consumer);
- return uprobe_prog_run(uprobe, instruction_pointer(regs), regs);
+ ret = uprobe_prog_run(uprobe, instruction_pointer(regs), regs, false, data);
+ if (uprobe->session)
+ return ret ? UPROBE_HANDLER_IGNORE : 0;
+ return 0;
}
static int
-uprobe_multi_link_ret_handler(struct uprobe_consumer *con, unsigned long func, struct pt_regs *regs)
+uprobe_multi_link_ret_handler(struct uprobe_consumer *con, unsigned long func, struct pt_regs *regs,
+ __u64 *data)
{
struct bpf_uprobe *uprobe;
uprobe = container_of(con, struct bpf_uprobe, consumer);
- return uprobe_prog_run(uprobe, func, regs);
+ uprobe_prog_run(uprobe, func, regs, true, data);
+ return 0;
}
static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
{
struct bpf_uprobe_multi_run_ctx *run_ctx;
- run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx, run_ctx);
+ run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx,
+ session_ctx.run_ctx);
return run_ctx->entry_ip;
}
@@ -3269,7 +3318,8 @@ static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
{
struct bpf_uprobe_multi_run_ctx *run_ctx;
- run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx, run_ctx);
+ run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx,
+ session_ctx.run_ctx);
return run_ctx->uprobe->cookie;
}
@@ -3293,7 +3343,7 @@ int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *pr
if (sizeof(u64) != sizeof(void *))
return -EOPNOTSUPP;
- if (prog->expected_attach_type != BPF_TRACE_UPROBE_MULTI)
+ if (!is_uprobe_multi(prog))
return -EINVAL;
flags = attr->link_create.uprobe_multi.flags;
@@ -3369,11 +3419,12 @@ int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *pr
uprobes[i].link = link;
- if (flags & BPF_F_UPROBE_MULTI_RETURN)
- uprobes[i].consumer.ret_handler = uprobe_multi_link_ret_handler;
- else
+ if (!(flags & BPF_F_UPROBE_MULTI_RETURN))
uprobes[i].consumer.handler = uprobe_multi_link_handler;
-
+ if (flags & BPF_F_UPROBE_MULTI_RETURN || is_uprobe_session(prog))
+ uprobes[i].consumer.ret_handler = uprobe_multi_link_ret_handler;
+ if (is_uprobe_session(prog))
+ uprobes[i].session = true;
if (pid)
uprobes[i].consumer.filter = uprobe_multi_link_filter;
}
@@ -3462,7 +3513,7 @@ static int bpf_kprobe_multi_filter(const struct bpf_prog *prog, u32 kfunc_id)
if (!btf_id_set8_contains(&kprobe_multi_kfunc_set_ids, kfunc_id))
return 0;
- if (!is_kprobe_session(prog))
+ if (!is_kprobe_session(prog) && !is_uprobe_session(prog))
return -EACCES;
return 0;
@@ -3480,3 +3531,16 @@ static int __init bpf_kprobe_multi_kfuncs_init(void)
}
late_initcall(bpf_kprobe_multi_kfuncs_init);
+
+__bpf_kfunc_start_defs();
+
+__bpf_kfunc int bpf_send_signal_task(struct task_struct *task, int sig, enum pid_type type,
+ u64 value)
+{
+ if (type != PIDTYPE_PID && type != PIDTYPE_TGID)
+ return -EINVAL;
+
+ return bpf_send_signal_common(sig, type, task, value);
+}
+
+__bpf_kfunc_end_defs();
diff --git a/kernel/trace/fgraph.c b/kernel/trace/fgraph.c
index 69e226a48daa..0bf78517b5d4 100644
--- a/kernel/trace/fgraph.c
+++ b/kernel/trace/fgraph.c
@@ -153,7 +153,7 @@ enum {
* SHADOW_STACK_OFFSET: The size in long words of the shadow stack
* SHADOW_STACK_MAX_OFFSET: The max offset of the stack for a new frame to be added
*/
-#define SHADOW_STACK_SIZE (PAGE_SIZE)
+#define SHADOW_STACK_SIZE (4096)
#define SHADOW_STACK_OFFSET (SHADOW_STACK_SIZE / sizeof(long))
/* Leave on a buffer at the end */
#define SHADOW_STACK_MAX_OFFSET \
@@ -172,6 +172,8 @@ enum {
DEFINE_STATIC_KEY_FALSE(kill_ftrace_graph);
int ftrace_graph_active;
+static struct kmem_cache *fgraph_stack_cachep;
+
static struct fgraph_ops *fgraph_array[FGRAPH_ARRAY_SIZE];
static unsigned long fgraph_array_bitmask;
@@ -390,21 +392,7 @@ void *fgraph_reserve_data(int idx, int size_bytes)
*/
void *fgraph_retrieve_data(int idx, int *size_bytes)
{
- int offset = current->curr_ret_stack - 1;
- unsigned long val;
-
- val = get_fgraph_entry(current, offset);
- while (__get_type(val) == FGRAPH_TYPE_DATA) {
- if (__get_data_index(val) == idx)
- goto found;
- offset -= __get_data_size(val) + 1;
- val = get_fgraph_entry(current, offset);
- }
- return NULL;
-found:
- if (size_bytes)
- *size_bytes = __get_data_size(val) * sizeof(long);
- return get_data_type_data(current, offset);
+ return fgraph_retrieve_parent_data(idx, size_bytes, 0);
}
/**
@@ -460,8 +448,56 @@ get_ret_stack(struct task_struct *t, int offset, int *frame_offset)
return RET_STACK(t, offset);
}
+/**
+ * fgraph_retrieve_parent_data - get data from a parent function
+ * @idx: The index into the fgraph_array (fgraph_ops::idx)
+ * @size_bytes: A pointer to retrieved data size
+ * @depth: The depth to find the parent (0 is the current function)
+ *
+ * This is similar to fgraph_retrieve_data() but can be used to retrieve
+ * data from a parent caller function.
+ *
+ * Return: a pointer to the specified parent data or NULL if not found
+ */
+void *fgraph_retrieve_parent_data(int idx, int *size_bytes, int depth)
+{
+ struct ftrace_ret_stack *ret_stack = NULL;
+ int offset = current->curr_ret_stack;
+ unsigned long val;
+
+ if (offset <= 0)
+ return NULL;
+
+ for (;;) {
+ int next_offset;
+
+ ret_stack = get_ret_stack(current, offset, &next_offset);
+ if (!ret_stack || --depth < 0)
+ break;
+ offset = next_offset;
+ }
+
+ if (!ret_stack)
+ return NULL;
+
+ offset--;
+
+ val = get_fgraph_entry(current, offset);
+ while (__get_type(val) == FGRAPH_TYPE_DATA) {
+ if (__get_data_index(val) == idx)
+ goto found;
+ offset -= __get_data_size(val) + 1;
+ val = get_fgraph_entry(current, offset);
+ }
+ return NULL;
+found:
+ if (size_bytes)
+ *size_bytes = __get_data_size(val) * sizeof(long);
+ return get_data_type_data(current, offset);
+}
+
/* Both enabled by default (can be cleared by function_graph tracer flags */
-static bool fgraph_sleep_time = true;
+bool fgraph_sleep_time = true;
#ifdef CONFIG_DYNAMIC_FTRACE
/*
@@ -524,7 +560,6 @@ ftrace_push_return_trace(unsigned long ret, unsigned long func,
int fgraph_idx)
{
struct ftrace_ret_stack *ret_stack;
- unsigned long long calltime;
unsigned long val;
int offset;
@@ -554,8 +589,6 @@ ftrace_push_return_trace(unsigned long ret, unsigned long func,
return -EBUSY;
}
- calltime = trace_clock_local();
-
offset = READ_ONCE(current->curr_ret_stack);
ret_stack = RET_STACK(current, offset);
offset += FGRAPH_FRAME_OFFSET;
@@ -589,7 +622,6 @@ ftrace_push_return_trace(unsigned long ret, unsigned long func,
ret_stack->ret = ret;
ret_stack->func = func;
- ret_stack->calltime = calltime;
#ifdef HAVE_FUNCTION_GRAPH_FP_TEST
ret_stack->fp = frame_pointer;
#endif
@@ -723,7 +755,6 @@ ftrace_pop_return_trace(struct ftrace_graph_ret *trace, unsigned long *ret,
*offset += FGRAPH_FRAME_OFFSET;
*ret = ret_stack->ret;
trace->func = ret_stack->func;
- trace->calltime = ret_stack->calltime;
trace->overrun = atomic_read(&current->trace_overrun);
trace->depth = current->curr_ret_depth;
/*
@@ -868,6 +899,29 @@ ftrace_graph_get_ret_stack(struct task_struct *task, int idx)
}
/**
+ * ftrace_graph_top_ret_addr - return the top return address in the shadow stack
+ * @task: The task to read the shadow stack from.
+ *
+ * Return the first return address on the shadow stack of the @task, which is
+ * not the fgraph's return_to_handler.
+ */
+unsigned long ftrace_graph_top_ret_addr(struct task_struct *task)
+{
+ unsigned long return_handler = (unsigned long)dereference_kernel_function_descriptor(return_to_handler);
+ struct ftrace_ret_stack *ret_stack = NULL;
+ int offset = task->curr_ret_stack;
+
+ if (offset < 0)
+ return 0;
+
+ do {
+ ret_stack = get_ret_stack(task, offset, &offset);
+ } while (ret_stack && ret_stack->ret == return_handler);
+
+ return ret_stack ? ret_stack->ret : 0;
+}
+
+/**
* ftrace_graph_ret_addr - return the original value of the return address
* @task: The task the unwinder is being executed on
* @idx: An initialized pointer to the next stack index to use
@@ -892,7 +946,7 @@ unsigned long ftrace_graph_ret_addr(struct task_struct *task, int *idx,
{
struct ftrace_ret_stack *ret_stack;
unsigned long return_handler = (unsigned long)dereference_kernel_function_descriptor(return_to_handler);
- int i = task->curr_ret_stack;
+ int i;
if (ret != return_handler)
return ret;
@@ -970,8 +1024,11 @@ static int alloc_retstack_tasklist(unsigned long **ret_stack_list)
int start = 0, end = FTRACE_RETSTACK_ALLOC_SIZE;
struct task_struct *g, *t;
+ if (WARN_ON_ONCE(!fgraph_stack_cachep))
+ return -ENOMEM;
+
for (i = 0; i < FTRACE_RETSTACK_ALLOC_SIZE; i++) {
- ret_stack_list[i] = kmalloc(SHADOW_STACK_SIZE, GFP_KERNEL);
+ ret_stack_list[i] = kmem_cache_alloc(fgraph_stack_cachep, GFP_KERNEL);
if (!ret_stack_list[i]) {
start = 0;
end = i;
@@ -1002,7 +1059,7 @@ unlock:
rcu_read_unlock();
free:
for (i = start; i < end; i++)
- kfree(ret_stack_list[i]);
+ kmem_cache_free(fgraph_stack_cachep, ret_stack_list[i]);
return ret;
}
@@ -1012,9 +1069,7 @@ ftrace_graph_probe_sched_switch(void *ignore, bool preempt,
struct task_struct *next,
unsigned int prev_state)
{
- struct ftrace_ret_stack *ret_stack;
unsigned long long timestamp;
- int offset;
/*
* Does the user want to count the time a function was asleep.
@@ -1031,17 +1086,7 @@ ftrace_graph_probe_sched_switch(void *ignore, bool preempt,
if (!next->ftrace_timestamp)
return;
- /*
- * Update all the counters in next to make up for the
- * time next was sleeping.
- */
- timestamp -= next->ftrace_timestamp;
-
- for (offset = next->curr_ret_stack; offset > 0; ) {
- ret_stack = get_ret_stack(next, offset, &offset);
- if (ret_stack)
- ret_stack->calltime += timestamp;
- }
+ next->ftrace_sleeptime += timestamp - next->ftrace_timestamp;
}
static DEFINE_PER_CPU(unsigned long *, idle_ret_stack);
@@ -1077,9 +1122,12 @@ void ftrace_graph_init_idle_task(struct task_struct *t, int cpu)
if (ftrace_graph_active) {
unsigned long *ret_stack;
+ if (WARN_ON_ONCE(!fgraph_stack_cachep))
+ return;
+
ret_stack = per_cpu(idle_ret_stack, cpu);
if (!ret_stack) {
- ret_stack = kmalloc(SHADOW_STACK_SIZE, GFP_KERNEL);
+ ret_stack = kmem_cache_alloc(fgraph_stack_cachep, GFP_KERNEL);
if (!ret_stack)
return;
per_cpu(idle_ret_stack, cpu) = ret_stack;
@@ -1099,7 +1147,10 @@ void ftrace_graph_init_task(struct task_struct *t)
if (ftrace_graph_active) {
unsigned long *ret_stack;
- ret_stack = kmalloc(SHADOW_STACK_SIZE, GFP_KERNEL);
+ if (WARN_ON_ONCE(!fgraph_stack_cachep))
+ return;
+
+ ret_stack = kmem_cache_alloc(fgraph_stack_cachep, GFP_KERNEL);
if (!ret_stack)
return;
graph_init_task(t, ret_stack);
@@ -1114,7 +1165,11 @@ void ftrace_graph_exit_task(struct task_struct *t)
/* NULL must become visible to IRQs before we free it: */
barrier();
- kfree(ret_stack);
+ if (ret_stack) {
+ if (WARN_ON_ONCE(!fgraph_stack_cachep))
+ return;
+ kmem_cache_free(fgraph_stack_cachep, ret_stack);
+ }
}
#ifdef CONFIG_DYNAMIC_FTRACE
@@ -1254,6 +1309,14 @@ int register_ftrace_graph(struct fgraph_ops *gops)
guard(mutex)(&ftrace_lock);
+ if (!fgraph_stack_cachep) {
+ fgraph_stack_cachep = kmem_cache_create("fgraph_stack",
+ SHADOW_STACK_SIZE,
+ SHADOW_STACK_SIZE, 0, NULL);
+ if (!fgraph_stack_cachep)
+ return -ENOMEM;
+ }
+
if (!fgraph_initialized) {
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "fgraph:online",
fgraph_cpu_init, NULL);
@@ -1318,17 +1381,17 @@ void unregister_ftrace_graph(struct fgraph_ops *gops)
{
int command = 0;
- mutex_lock(&ftrace_lock);
+ guard(mutex)(&ftrace_lock);
if (unlikely(!ftrace_graph_active))
- goto out;
+ return;
if (unlikely(gops->idx < 0 || gops->idx >= FGRAPH_ARRAY_SIZE ||
fgraph_array[gops->idx] != gops))
- goto out;
+ return;
if (fgraph_lru_release_index(gops->idx) < 0)
- goto out;
+ return;
fgraph_array[gops->idx] = &fgraph_stub;
@@ -1350,7 +1413,5 @@ void unregister_ftrace_graph(struct fgraph_ops *gops)
unregister_pm_notifier(&ftrace_suspend_notifier);
unregister_trace_sched_switch(ftrace_graph_probe_sched_switch, NULL);
}
- out:
gops->saved_func = NULL;
- mutex_unlock(&ftrace_lock);
}
diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c
index 4c28dd177ca6..9b17efb1a87d 100644
--- a/kernel/trace/ftrace.c
+++ b/kernel/trace/ftrace.c
@@ -820,10 +820,16 @@ void ftrace_graph_graph_time_control(bool enable)
fgraph_graph_time = enable;
}
+struct profile_fgraph_data {
+ unsigned long long calltime;
+ unsigned long long subtime;
+ unsigned long long sleeptime;
+};
+
static int profile_graph_entry(struct ftrace_graph_ent *trace,
struct fgraph_ops *gops)
{
- struct ftrace_ret_stack *ret_stack;
+ struct profile_fgraph_data *profile_data;
function_profile_call(trace->func, 0, NULL, NULL);
@@ -831,9 +837,13 @@ static int profile_graph_entry(struct ftrace_graph_ent *trace,
if (!current->ret_stack)
return 0;
- ret_stack = ftrace_graph_get_ret_stack(current, 0);
- if (ret_stack)
- ret_stack->subtime = 0;
+ profile_data = fgraph_reserve_data(gops->idx, sizeof(*profile_data));
+ if (!profile_data)
+ return 0;
+
+ profile_data->subtime = 0;
+ profile_data->sleeptime = current->ftrace_sleeptime;
+ profile_data->calltime = trace_clock_local();
return 1;
}
@@ -841,33 +851,42 @@ static int profile_graph_entry(struct ftrace_graph_ent *trace,
static void profile_graph_return(struct ftrace_graph_ret *trace,
struct fgraph_ops *gops)
{
- struct ftrace_ret_stack *ret_stack;
+ struct profile_fgraph_data *profile_data;
struct ftrace_profile_stat *stat;
unsigned long long calltime;
+ unsigned long long rettime = trace_clock_local();
struct ftrace_profile *rec;
unsigned long flags;
+ int size;
local_irq_save(flags);
stat = this_cpu_ptr(&ftrace_profile_stats);
if (!stat->hash || !ftrace_profile_enabled)
goto out;
+ profile_data = fgraph_retrieve_data(gops->idx, &size);
+
/* If the calltime was zero'd ignore it */
- if (!trace->calltime)
+ if (!profile_data || !profile_data->calltime)
goto out;
- calltime = trace->rettime - trace->calltime;
+ calltime = rettime - profile_data->calltime;
+
+ if (!fgraph_sleep_time) {
+ if (current->ftrace_sleeptime)
+ calltime -= current->ftrace_sleeptime - profile_data->sleeptime;
+ }
if (!fgraph_graph_time) {
+ struct profile_fgraph_data *parent_data;
/* Append this call time to the parent time to subtract */
- ret_stack = ftrace_graph_get_ret_stack(current, 1);
- if (ret_stack)
- ret_stack->subtime += calltime;
+ parent_data = fgraph_retrieve_parent_data(gops->idx, &size, 1);
+ if (parent_data)
+ parent_data->subtime += calltime;
- ret_stack = ftrace_graph_get_ret_stack(current, 0);
- if (ret_stack && ret_stack->subtime < calltime)
- calltime -= ret_stack->subtime;
+ if (profile_data->subtime && profile_data->subtime < calltime)
+ calltime -= profile_data->subtime;
else
calltime = 0;
}
@@ -883,6 +902,10 @@ static void profile_graph_return(struct ftrace_graph_ret *trace,
}
static struct fgraph_ops fprofiler_ops = {
+ .ops = {
+ .flags = FTRACE_OPS_FL_INITIALIZED,
+ INIT_OPS_HASH(fprofiler_ops.ops)
+ },
.entryfunc = &profile_graph_entry,
.retfunc = &profile_graph_return,
};
@@ -3663,7 +3686,8 @@ static int ftrace_hash_move_and_update_subops(struct ftrace_ops *subops,
}
-static u64 ftrace_update_time;
+u64 ftrace_update_time;
+u64 ftrace_total_mod_time;
unsigned long ftrace_update_tot_cnt;
unsigned long ftrace_number_of_pages;
unsigned long ftrace_number_of_groups;
@@ -3683,7 +3707,7 @@ static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
bool init_nop = ftrace_need_init_nop();
struct ftrace_page *pg;
struct dyn_ftrace *p;
- u64 start, stop;
+ u64 start, stop, update_time;
unsigned long update_cnt = 0;
unsigned long rec_flags = 0;
int i;
@@ -3727,7 +3751,11 @@ static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
}
stop = ftrace_now(raw_smp_processor_id());
- ftrace_update_time = stop - start;
+ update_time = stop - start;
+ if (mod)
+ ftrace_total_mod_time += update_time;
+ else
+ ftrace_update_time = update_time;
ftrace_update_tot_cnt += update_cnt;
return 0;
@@ -4806,15 +4834,13 @@ match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
mod_g.len = strlen(mod_g.search);
}
- mutex_lock(&ftrace_lock);
+ guard(mutex)(&ftrace_lock);
if (unlikely(ftrace_disabled))
- goto out_unlock;
+ return 0;
- if (func_g.type == MATCH_INDEX) {
- found = add_rec_by_index(hash, &func_g, clear_filter);
- goto out_unlock;
- }
+ if (func_g.type == MATCH_INDEX)
+ return add_rec_by_index(hash, &func_g, clear_filter);
do_for_each_ftrace_rec(pg, rec) {
@@ -4823,16 +4849,12 @@ match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
ret = enter_record(hash, rec, clear_filter);
- if (ret < 0) {
- found = ret;
- goto out_unlock;
- }
+ if (ret < 0)
+ return ret;
found = 1;
}
cond_resched();
} while_for_each_ftrace_rec();
- out_unlock:
- mutex_unlock(&ftrace_lock);
return found;
}
@@ -4930,14 +4952,14 @@ static int cache_mod(struct trace_array *tr,
{
struct ftrace_mod_load *ftrace_mod, *n;
struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
- int ret;
- mutex_lock(&ftrace_lock);
+ guard(mutex)(&ftrace_lock);
/* We do not cache inverse filters */
if (func[0] == '!') {
+ int ret = -EINVAL;
+
func++;
- ret = -EINVAL;
/* Look to remove this hash */
list_for_each_entry_safe(ftrace_mod, n, head, list) {
@@ -4953,20 +4975,15 @@ static int cache_mod(struct trace_array *tr,
continue;
}
}
- goto out;
+ return ret;
}
- ret = -EINVAL;
/* We only care about modules that have not been loaded yet */
if (module_exists(module))
- goto out;
+ return -EINVAL;
/* Save this string off, and execute it when the module is loaded */
- ret = ftrace_add_mod(tr, func, module, enable);
- out:
- mutex_unlock(&ftrace_lock);
-
- return ret;
+ return ftrace_add_mod(tr, func, module, enable);
}
static int
@@ -5076,6 +5093,9 @@ ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
char *func;
int ret;
+ if (!tr)
+ return -ENODEV;
+
/* match_records() modifies func, and we need the original */
func = kstrdup(func_orig, GFP_KERNEL);
if (!func)
@@ -5276,7 +5296,7 @@ static void release_probe(struct ftrace_func_probe *probe)
{
struct ftrace_probe_ops *probe_ops;
- mutex_lock(&ftrace_lock);
+ guard(mutex)(&ftrace_lock);
WARN_ON(probe->ref <= 0);
@@ -5294,7 +5314,6 @@ static void release_probe(struct ftrace_func_probe *probe)
list_del(&probe->list);
kfree(probe);
}
- mutex_unlock(&ftrace_lock);
}
static void acquire_probe_locked(struct ftrace_func_probe *probe)
@@ -6805,12 +6824,10 @@ ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
func_g.len = strlen(func_g.search);
- mutex_lock(&ftrace_lock);
+ guard(mutex)(&ftrace_lock);
- if (unlikely(ftrace_disabled)) {
- mutex_unlock(&ftrace_lock);
+ if (unlikely(ftrace_disabled))
return -ENODEV;
- }
do_for_each_ftrace_rec(pg, rec) {
@@ -6826,7 +6843,7 @@ ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
if (entry)
continue;
if (add_hash_entry(hash, rec->ip) == NULL)
- goto out;
+ return 0;
} else {
if (entry) {
free_hash_entry(hash, entry);
@@ -6835,13 +6852,8 @@ ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
}
}
} while_for_each_ftrace_rec();
-out:
- mutex_unlock(&ftrace_lock);
- if (fail)
- return -EINVAL;
-
- return 0;
+ return fail ? -EINVAL : 0;
}
static ssize_t
@@ -7920,7 +7932,7 @@ out:
void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *op, struct ftrace_regs *fregs)
{
- kmsan_unpoison_memory(fregs, sizeof(*fregs));
+ kmsan_unpoison_memory(fregs, ftrace_regs_size());
__ftrace_ops_list_func(ip, parent_ip, NULL, fregs);
}
#else
diff --git a/kernel/trace/ring_buffer.c b/kernel/trace/ring_buffer.c
index 5807116bcd0b..7e257e855dd1 100644
--- a/kernel/trace/ring_buffer.c
+++ b/kernel/trace/ring_buffer.c
@@ -482,6 +482,8 @@ struct ring_buffer_per_cpu {
unsigned long nr_pages;
unsigned int current_context;
struct list_head *pages;
+ /* pages generation counter, incremented when the list changes */
+ unsigned long cnt;
struct buffer_page *head_page; /* read from head */
struct buffer_page *tail_page; /* write to tail */
struct buffer_page *commit_page; /* committed pages */
@@ -1475,40 +1477,87 @@ static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
}
+static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
+ struct list_head *list)
+{
+ if (RB_WARN_ON(cpu_buffer,
+ rb_list_head(rb_list_head(list->next)->prev) != list))
+ return false;
+
+ if (RB_WARN_ON(cpu_buffer,
+ rb_list_head(rb_list_head(list->prev)->next) != list))
+ return false;
+
+ return true;
+}
+
/**
* rb_check_pages - integrity check of buffer pages
* @cpu_buffer: CPU buffer with pages to test
*
* As a safety measure we check to make sure the data pages have not
* been corrupted.
- *
- * Callers of this function need to guarantee that the list of pages doesn't get
- * modified during the check. In particular, if it's possible that the function
- * is invoked with concurrent readers which can swap in a new reader page then
- * the caller should take cpu_buffer->reader_lock.
*/
static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
{
- struct list_head *head = rb_list_head(cpu_buffer->pages);
- struct list_head *tmp;
+ struct list_head *head, *tmp;
+ unsigned long buffer_cnt;
+ unsigned long flags;
+ int nr_loops = 0;
- if (RB_WARN_ON(cpu_buffer,
- rb_list_head(rb_list_head(head->next)->prev) != head))
+ /*
+ * Walk the linked list underpinning the ring buffer and validate all
+ * its next and prev links.
+ *
+ * The check acquires the reader_lock to avoid concurrent processing
+ * with code that could be modifying the list. However, the lock cannot
+ * be held for the entire duration of the walk, as this would make the
+ * time when interrupts are disabled non-deterministic, dependent on the
+ * ring buffer size. Therefore, the code releases and re-acquires the
+ * lock after checking each page. The ring_buffer_per_cpu.cnt variable
+ * is then used to detect if the list was modified while the lock was
+ * not held, in which case the check needs to be restarted.
+ *
+ * The code attempts to perform the check at most three times before
+ * giving up. This is acceptable because this is only a self-validation
+ * to detect problems early on. In practice, the list modification
+ * operations are fairly spaced, and so this check typically succeeds at
+ * most on the second try.
+ */
+again:
+ if (++nr_loops > 3)
return;
- if (RB_WARN_ON(cpu_buffer,
- rb_list_head(rb_list_head(head->prev)->next) != head))
- return;
+ raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
+ head = rb_list_head(cpu_buffer->pages);
+ if (!rb_check_links(cpu_buffer, head))
+ goto out_locked;
+ buffer_cnt = cpu_buffer->cnt;
+ tmp = head;
+ raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
- for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
- if (RB_WARN_ON(cpu_buffer,
- rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
- return;
+ while (true) {
+ raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
- if (RB_WARN_ON(cpu_buffer,
- rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
- return;
+ if (buffer_cnt != cpu_buffer->cnt) {
+ /* The list was updated, try again. */
+ raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
+ goto again;
+ }
+
+ tmp = rb_list_head(tmp->next);
+ if (tmp == head)
+ /* The iteration circled back, all is done. */
+ goto out_locked;
+
+ if (!rb_check_links(cpu_buffer, tmp))
+ goto out_locked;
+
+ raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
}
+
+out_locked:
+ raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
}
/*
@@ -2384,9 +2433,9 @@ EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
* __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
* @size: the size in bytes per cpu that is needed.
* @flags: attributes to set for the ring buffer.
+ * @order: sub-buffer order
* @start: start of allocated range
* @range_size: size of allocated range
- * @order: sub-buffer order
* @key: ring buffer reader_lock_key.
*
* Currently the only flag that is available is the RB_FL_OVERWRITE
@@ -2532,6 +2581,7 @@ rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
/* make sure pages points to a valid page in the ring buffer */
cpu_buffer->pages = next_page;
+ cpu_buffer->cnt++;
/* update head page */
if (head_bit)
@@ -2638,6 +2688,7 @@ rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
* pointer to point to end of list
*/
head_page->prev = last_page;
+ cpu_buffer->cnt++;
success = true;
break;
}
@@ -2873,12 +2924,8 @@ int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
*/
synchronize_rcu();
for_each_buffer_cpu(buffer, cpu) {
- unsigned long flags;
-
cpu_buffer = buffer->buffers[cpu];
- raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
rb_check_pages(cpu_buffer);
- raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
}
atomic_dec(&buffer->record_disabled);
}
@@ -4010,7 +4057,7 @@ static const char *show_irq_str(int bits)
return type[bits];
}
-/* Assume this is an trace event */
+/* Assume this is a trace event */
static const char *show_flags(struct ring_buffer_event *event)
{
struct trace_entry *entry;
@@ -5296,6 +5343,7 @@ rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
rb_inc_page(&cpu_buffer->head_page);
+ cpu_buffer->cnt++;
local_inc(&cpu_buffer->pages_read);
/* Finally update the reader page to the new head */
@@ -5835,12 +5883,9 @@ void
ring_buffer_read_finish(struct ring_buffer_iter *iter)
{
struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
- unsigned long flags;
/* Use this opportunity to check the integrity of the ring buffer. */
- raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
rb_check_pages(cpu_buffer);
- raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
atomic_dec(&cpu_buffer->resize_disabled);
kfree(iter->event);
@@ -6757,6 +6802,7 @@ int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
/* Install the new pages, remove the head from the list */
cpu_buffer->pages = cpu_buffer->new_pages.next;
list_del_init(&cpu_buffer->new_pages);
+ cpu_buffer->cnt++;
cpu_buffer->head_page
= list_entry(cpu_buffer->pages, struct buffer_page, list);
diff --git a/kernel/trace/ring_buffer_benchmark.c b/kernel/trace/ring_buffer_benchmark.c
index 008187ebd7fe..cdc3aea12c93 100644
--- a/kernel/trace/ring_buffer_benchmark.c
+++ b/kernel/trace/ring_buffer_benchmark.c
@@ -307,14 +307,14 @@ static void ring_buffer_producer(void)
if (!disable_reader) {
if (consumer_fifo)
trace_printk("Running Consumer at SCHED_FIFO %s\n",
- consumer_fifo == 1 ? "low" : "high");
+ str_low_high(consumer_fifo == 1));
else
trace_printk("Running Consumer at nice: %d\n",
consumer_nice);
}
if (producer_fifo)
trace_printk("Running Producer at SCHED_FIFO %s\n",
- producer_fifo == 1 ? "low" : "high");
+ str_low_high(producer_fifo == 1));
else
trace_printk("Running Producer at nice: %d\n",
producer_nice);
diff --git a/kernel/trace/rv/rv.c b/kernel/trace/rv/rv.c
index dc819aec43e8..279c70e1bd74 100644
--- a/kernel/trace/rv/rv.c
+++ b/kernel/trace/rv/rv.c
@@ -41,7 +41,7 @@
* per-task monitor, and so on), and the helper functions that glue the
* monitor to the system via trace. Generally, a monitor includes some form
* of trace output as a reaction for event parsing and exceptions,
- * as depicted bellow:
+ * as depicted below:
*
* Linux +----- RV Monitor ----------------------------------+ Formal
* Realm | | Realm
diff --git a/kernel/trace/trace.c b/kernel/trace/trace.c
index 6a891e00aa7f..3ef047ed9705 100644
--- a/kernel/trace/trace.c
+++ b/kernel/trace/trace.c
@@ -593,19 +593,6 @@ int tracing_check_open_get_tr(struct trace_array *tr)
return 0;
}
-int call_filter_check_discard(struct trace_event_call *call, void *rec,
- struct trace_buffer *buffer,
- struct ring_buffer_event *event)
-{
- if (unlikely(call->flags & TRACE_EVENT_FL_FILTERED) &&
- !filter_match_preds(call->filter, rec)) {
- __trace_event_discard_commit(buffer, event);
- return 1;
- }
-
- return 0;
-}
-
/**
* trace_find_filtered_pid - check if a pid exists in a filtered_pid list
* @filtered_pids: The list of pids to check
@@ -988,7 +975,8 @@ static inline void trace_access_lock_init(void)
#endif
#ifdef CONFIG_STACKTRACE
-static void __ftrace_trace_stack(struct trace_buffer *buffer,
+static void __ftrace_trace_stack(struct trace_array *tr,
+ struct trace_buffer *buffer,
unsigned int trace_ctx,
int skip, struct pt_regs *regs);
static inline void ftrace_trace_stack(struct trace_array *tr,
@@ -997,7 +985,8 @@ static inline void ftrace_trace_stack(struct trace_array *tr,
int skip, struct pt_regs *regs);
#else
-static inline void __ftrace_trace_stack(struct trace_buffer *buffer,
+static inline void __ftrace_trace_stack(struct trace_array *tr,
+ struct trace_buffer *buffer,
unsigned int trace_ctx,
int skip, struct pt_regs *regs)
{
@@ -1934,7 +1923,7 @@ __update_max_tr(struct trace_array *tr, struct task_struct *tsk, int cpu)
max_data->critical_start = data->critical_start;
max_data->critical_end = data->critical_end;
- strncpy(max_data->comm, tsk->comm, TASK_COMM_LEN);
+ strscpy(max_data->comm, tsk->comm);
max_data->pid = tsk->pid;
/*
* If tsk == current, then use current_uid(), as that does not use
@@ -2908,7 +2897,6 @@ void
trace_function(struct trace_array *tr, unsigned long ip, unsigned long
parent_ip, unsigned int trace_ctx)
{
- struct trace_event_call *call = &event_function;
struct trace_buffer *buffer = tr->array_buffer.buffer;
struct ring_buffer_event *event;
struct ftrace_entry *entry;
@@ -2921,11 +2909,9 @@ trace_function(struct trace_array *tr, unsigned long ip, unsigned long
entry->ip = ip;
entry->parent_ip = parent_ip;
- if (!call_filter_check_discard(call, entry, buffer, event)) {
- if (static_branch_unlikely(&trace_function_exports_enabled))
- ftrace_exports(event, TRACE_EXPORT_FUNCTION);
- __buffer_unlock_commit(buffer, event);
- }
+ if (static_branch_unlikely(&trace_function_exports_enabled))
+ ftrace_exports(event, TRACE_EXPORT_FUNCTION);
+ __buffer_unlock_commit(buffer, event);
}
#ifdef CONFIG_STACKTRACE
@@ -2933,7 +2919,7 @@ trace_function(struct trace_array *tr, unsigned long ip, unsigned long
/* Allow 4 levels of nesting: normal, softirq, irq, NMI */
#define FTRACE_KSTACK_NESTING 4
-#define FTRACE_KSTACK_ENTRIES (PAGE_SIZE / FTRACE_KSTACK_NESTING)
+#define FTRACE_KSTACK_ENTRIES (SZ_4K / FTRACE_KSTACK_NESTING)
struct ftrace_stack {
unsigned long calls[FTRACE_KSTACK_ENTRIES];
@@ -2947,11 +2933,11 @@ struct ftrace_stacks {
static DEFINE_PER_CPU(struct ftrace_stacks, ftrace_stacks);
static DEFINE_PER_CPU(int, ftrace_stack_reserve);
-static void __ftrace_trace_stack(struct trace_buffer *buffer,
+static void __ftrace_trace_stack(struct trace_array *tr,
+ struct trace_buffer *buffer,
unsigned int trace_ctx,
int skip, struct pt_regs *regs)
{
- struct trace_event_call *call = &event_kernel_stack;
struct ring_buffer_event *event;
unsigned int size, nr_entries;
struct ftrace_stack *fstack;
@@ -2994,6 +2980,20 @@ static void __ftrace_trace_stack(struct trace_buffer *buffer,
nr_entries = stack_trace_save(fstack->calls, size, skip);
}
+#ifdef CONFIG_DYNAMIC_FTRACE
+ /* Mark entry of stack trace as trampoline code */
+ if (tr->ops && tr->ops->trampoline) {
+ unsigned long tramp_start = tr->ops->trampoline;
+ unsigned long tramp_end = tramp_start + tr->ops->trampoline_size;
+ unsigned long *calls = fstack->calls;
+
+ for (int i = 0; i < nr_entries; i++) {
+ if (calls[i] >= tramp_start && calls[i] < tramp_end)
+ calls[i] = FTRACE_TRAMPOLINE_MARKER;
+ }
+ }
+#endif
+
event = __trace_buffer_lock_reserve(buffer, TRACE_STACK,
struct_size(entry, caller, nr_entries),
trace_ctx);
@@ -3005,8 +3005,7 @@ static void __ftrace_trace_stack(struct trace_buffer *buffer,
memcpy(&entry->caller, fstack->calls,
flex_array_size(entry, caller, nr_entries));
- if (!call_filter_check_discard(call, entry, buffer, event))
- __buffer_unlock_commit(buffer, event);
+ __buffer_unlock_commit(buffer, event);
out:
/* Again, don't let gcc optimize things here */
@@ -3024,7 +3023,7 @@ static inline void ftrace_trace_stack(struct trace_array *tr,
if (!(tr->trace_flags & TRACE_ITER_STACKTRACE))
return;
- __ftrace_trace_stack(buffer, trace_ctx, skip, regs);
+ __ftrace_trace_stack(tr, buffer, trace_ctx, skip, regs);
}
void __trace_stack(struct trace_array *tr, unsigned int trace_ctx,
@@ -3033,7 +3032,7 @@ void __trace_stack(struct trace_array *tr, unsigned int trace_ctx,
struct trace_buffer *buffer = tr->array_buffer.buffer;
if (rcu_is_watching()) {
- __ftrace_trace_stack(buffer, trace_ctx, skip, NULL);
+ __ftrace_trace_stack(tr, buffer, trace_ctx, skip, NULL);
return;
}
@@ -3050,7 +3049,7 @@ void __trace_stack(struct trace_array *tr, unsigned int trace_ctx,
return;
ct_irq_enter_irqson();
- __ftrace_trace_stack(buffer, trace_ctx, skip, NULL);
+ __ftrace_trace_stack(tr, buffer, trace_ctx, skip, NULL);
ct_irq_exit_irqson();
}
@@ -3067,8 +3066,8 @@ void trace_dump_stack(int skip)
/* Skip 1 to skip this function. */
skip++;
#endif
- __ftrace_trace_stack(printk_trace->array_buffer.buffer,
- tracing_gen_ctx(), skip, NULL);
+ __ftrace_trace_stack(printk_trace, printk_trace->array_buffer.buffer,
+ tracing_gen_ctx(), skip, NULL);
}
EXPORT_SYMBOL_GPL(trace_dump_stack);
@@ -3079,7 +3078,6 @@ static void
ftrace_trace_userstack(struct trace_array *tr,
struct trace_buffer *buffer, unsigned int trace_ctx)
{
- struct trace_event_call *call = &event_user_stack;
struct ring_buffer_event *event;
struct userstack_entry *entry;
@@ -3113,8 +3111,7 @@ ftrace_trace_userstack(struct trace_array *tr,
memset(&entry->caller, 0, sizeof(entry->caller));
stack_trace_save_user(entry->caller, FTRACE_STACK_ENTRIES);
- if (!call_filter_check_discard(call, entry, buffer, event))
- __buffer_unlock_commit(buffer, event);
+ __buffer_unlock_commit(buffer, event);
out_drop_count:
__this_cpu_dec(user_stack_count);
@@ -3283,7 +3280,6 @@ static void trace_printk_start_stop_comm(int enabled)
*/
int trace_vbprintk(unsigned long ip, const char *fmt, va_list args)
{
- struct trace_event_call *call = &event_bprint;
struct ring_buffer_event *event;
struct trace_buffer *buffer;
struct trace_array *tr = READ_ONCE(printk_trace);
@@ -3327,10 +3323,8 @@ int trace_vbprintk(unsigned long ip, const char *fmt, va_list args)
entry->fmt = fmt;
memcpy(entry->buf, tbuffer, sizeof(u32) * len);
- if (!call_filter_check_discard(call, entry, buffer, event)) {
- __buffer_unlock_commit(buffer, event);
- ftrace_trace_stack(tr, buffer, trace_ctx, 6, NULL);
- }
+ __buffer_unlock_commit(buffer, event);
+ ftrace_trace_stack(tr, buffer, trace_ctx, 6, NULL);
out:
ring_buffer_nest_end(buffer);
@@ -3350,7 +3344,6 @@ static int
__trace_array_vprintk(struct trace_buffer *buffer,
unsigned long ip, const char *fmt, va_list args)
{
- struct trace_event_call *call = &event_print;
struct ring_buffer_event *event;
int len = 0, size;
struct print_entry *entry;
@@ -3385,10 +3378,8 @@ __trace_array_vprintk(struct trace_buffer *buffer,
entry->ip = ip;
memcpy(&entry->buf, tbuffer, len + 1);
- if (!call_filter_check_discard(call, entry, buffer, event)) {
- __buffer_unlock_commit(buffer, event);
- ftrace_trace_stack(printk_trace, buffer, trace_ctx, 6, NULL);
- }
+ __buffer_unlock_commit(buffer, event);
+ ftrace_trace_stack(printk_trace, buffer, trace_ctx, 6, NULL);
out:
ring_buffer_nest_end(buffer);
@@ -8587,15 +8578,22 @@ tracing_read_dyn_info(struct file *filp, char __user *ubuf,
char *buf;
int r;
- /* 256 should be plenty to hold the amount needed */
- buf = kmalloc(256, GFP_KERNEL);
+ /* 512 should be plenty to hold the amount needed */
+#define DYN_INFO_BUF_SIZE 512
+
+ buf = kmalloc(DYN_INFO_BUF_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
- r = scnprintf(buf, 256, "%ld pages:%ld groups: %ld\n",
+ r = scnprintf(buf, DYN_INFO_BUF_SIZE,
+ "%ld pages:%ld groups: %ld\n"
+ "ftrace boot update time = %llu (ns)\n"
+ "ftrace module total update time = %llu (ns)\n",
ftrace_update_tot_cnt,
ftrace_number_of_pages,
- ftrace_number_of_groups);
+ ftrace_number_of_groups,
+ ftrace_update_time,
+ ftrace_total_mod_time);
ret = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
kfree(buf);
diff --git a/kernel/trace/trace.h b/kernel/trace/trace.h
index c866991b9c78..266740b4e121 100644
--- a/kernel/trace/trace.h
+++ b/kernel/trace/trace.h
@@ -46,6 +46,7 @@ enum trace_type {
TRACE_BRANCH,
TRACE_GRAPH_RET,
TRACE_GRAPH_ENT,
+ TRACE_GRAPH_RETADDR_ENT,
TRACE_USER_STACK,
TRACE_BLK,
TRACE_BPUTS,
@@ -512,6 +513,8 @@ extern void __ftrace_bad_type(void);
IF_ASSIGN(var, ent, struct trace_branch, TRACE_BRANCH); \
IF_ASSIGN(var, ent, struct ftrace_graph_ent_entry, \
TRACE_GRAPH_ENT); \
+ IF_ASSIGN(var, ent, struct fgraph_retaddr_ent_entry,\
+ TRACE_GRAPH_RETADDR_ENT); \
IF_ASSIGN(var, ent, struct ftrace_graph_ret_entry, \
TRACE_GRAPH_RET); \
IF_ASSIGN(var, ent, struct func_repeats_entry, \
@@ -772,6 +775,8 @@ extern void trace_event_follow_fork(struct trace_array *tr, bool enable);
extern unsigned long ftrace_update_tot_cnt;
extern unsigned long ftrace_number_of_pages;
extern unsigned long ftrace_number_of_groups;
+extern u64 ftrace_update_time;
+extern u64 ftrace_total_mod_time;
void ftrace_init_trace_array(struct trace_array *tr);
#else
static inline void ftrace_init_trace_array(struct trace_array *tr) { }
@@ -879,6 +884,7 @@ static __always_inline bool ftrace_hash_empty(struct ftrace_hash *hash)
#define TRACE_GRAPH_GRAPH_TIME 0x400
#define TRACE_GRAPH_PRINT_RETVAL 0x800
#define TRACE_GRAPH_PRINT_RETVAL_HEX 0x1000
+#define TRACE_GRAPH_PRINT_RETADDR 0x2000
#define TRACE_GRAPH_PRINT_FILL_SHIFT 28
#define TRACE_GRAPH_PRINT_FILL_MASK (0x3 << TRACE_GRAPH_PRINT_FILL_SHIFT)
@@ -900,6 +906,10 @@ extern void graph_trace_close(struct trace_iterator *iter);
extern int __trace_graph_entry(struct trace_array *tr,
struct ftrace_graph_ent *trace,
unsigned int trace_ctx);
+extern int __trace_graph_retaddr_entry(struct trace_array *tr,
+ struct ftrace_graph_ent *trace,
+ unsigned int trace_ctx,
+ unsigned long retaddr);
extern void __trace_graph_return(struct trace_array *tr,
struct ftrace_graph_ret *trace,
unsigned int trace_ctx);
@@ -1048,6 +1058,7 @@ static inline void ftrace_graph_addr_finish(struct fgraph_ops *gops, struct ftra
#endif /* CONFIG_DYNAMIC_FTRACE */
extern unsigned int fgraph_max_depth;
+extern bool fgraph_sleep_time;
static inline bool
ftrace_graph_ignore_func(struct fgraph_ops *gops, struct ftrace_graph_ent *trace)
@@ -1429,10 +1440,6 @@ struct trace_subsystem_dir {
int nr_events;
};
-extern int call_filter_check_discard(struct trace_event_call *call, void *rec,
- struct trace_buffer *buffer,
- struct ring_buffer_event *event);
-
void trace_buffer_unlock_commit_regs(struct trace_array *tr,
struct trace_buffer *buffer,
struct ring_buffer_event *event,
@@ -2176,4 +2183,11 @@ static inline int rv_init_interface(void)
}
#endif
+/*
+ * This is used only to distinguish
+ * function address from trampoline code.
+ * So this value has no meaning.
+ */
+#define FTRACE_TRAMPOLINE_MARKER ((unsigned long) INT_MAX)
+
#endif /* _LINUX_KERNEL_TRACE_H */
diff --git a/kernel/trace/trace_branch.c b/kernel/trace/trace_branch.c
index e47fdb4c92fb..6d08a5523ce0 100644
--- a/kernel/trace/trace_branch.c
+++ b/kernel/trace/trace_branch.c
@@ -30,7 +30,6 @@ static struct trace_array *branch_tracer;
static void
probe_likely_condition(struct ftrace_likely_data *f, int val, int expect)
{
- struct trace_event_call *call = &event_branch;
struct trace_array *tr = branch_tracer;
struct trace_buffer *buffer;
struct trace_array_cpu *data;
@@ -74,16 +73,13 @@ probe_likely_condition(struct ftrace_likely_data *f, int val, int expect)
p--;
p++;
- strncpy(entry->func, f->data.func, TRACE_FUNC_SIZE);
- strncpy(entry->file, p, TRACE_FILE_SIZE);
- entry->func[TRACE_FUNC_SIZE] = 0;
- entry->file[TRACE_FILE_SIZE] = 0;
+ strscpy(entry->func, f->data.func);
+ strscpy(entry->file, p);
entry->constant = f->constant;
entry->line = f->data.line;
entry->correct = val == expect;
- if (!call_filter_check_discard(call, entry, buffer, event))
- trace_buffer_unlock_commit_nostack(buffer, event);
+ trace_buffer_unlock_commit_nostack(buffer, event);
out:
current->trace_recursion &= ~TRACE_BRANCH_BIT;
diff --git a/kernel/trace/trace_clock.c b/kernel/trace/trace_clock.c
index 4702efb00ff2..4cb2ebc439be 100644
--- a/kernel/trace/trace_clock.c
+++ b/kernel/trace/trace_clock.c
@@ -154,5 +154,5 @@ static atomic64_t trace_counter;
*/
u64 notrace trace_clock_counter(void)
{
- return atomic64_add_return(1, &trace_counter);
+ return atomic64_inc_return(&trace_counter);
}
diff --git a/kernel/trace/trace_entries.h b/kernel/trace/trace_entries.h
index c47422b20908..82fd174ebbe0 100644
--- a/kernel/trace/trace_entries.h
+++ b/kernel/trace/trace_entries.h
@@ -85,9 +85,35 @@ FTRACE_ENTRY_PACKED(funcgraph_entry, ftrace_graph_ent_entry,
F_printk("--> %ps (%d)", (void *)__entry->func, __entry->depth)
);
-/* Function return entry */
+#ifdef CONFIG_FUNCTION_GRAPH_RETADDR
+
+/* Function call entry with a return address */
+FTRACE_ENTRY_PACKED(fgraph_retaddr_entry, fgraph_retaddr_ent_entry,
+
+ TRACE_GRAPH_RETADDR_ENT,
+
+ F_STRUCT(
+ __field_struct( struct fgraph_retaddr_ent, graph_ent )
+ __field_packed( unsigned long, graph_ent, func )
+ __field_packed( int, graph_ent, depth )
+ __field_packed( unsigned long, graph_ent, retaddr )
+ ),
+
+ F_printk("--> %ps (%d) <- %ps", (void *)__entry->func, __entry->depth,
+ (void *)__entry->retaddr)
+);
+
+#else
+
+#ifndef fgraph_retaddr_ent_entry
+#define fgraph_retaddr_ent_entry ftrace_graph_ent_entry
+#endif
+
+#endif
+
#ifdef CONFIG_FUNCTION_GRAPH_RETVAL
+/* Function return entry */
FTRACE_ENTRY_PACKED(funcgraph_exit, ftrace_graph_ret_entry,
TRACE_GRAPH_RET,
@@ -110,6 +136,7 @@ FTRACE_ENTRY_PACKED(funcgraph_exit, ftrace_graph_ret_entry,
#else
+/* Function return entry */
FTRACE_ENTRY_PACKED(funcgraph_exit, ftrace_graph_ret_entry,
TRACE_GRAPH_RET,
diff --git a/kernel/trace/trace_event_perf.c b/kernel/trace/trace_event_perf.c
index 05e791241812..3ff9caa4a71b 100644
--- a/kernel/trace/trace_event_perf.c
+++ b/kernel/trace/trace_event_perf.c
@@ -352,10 +352,16 @@ void perf_uprobe_destroy(struct perf_event *p_event)
int perf_trace_add(struct perf_event *p_event, int flags)
{
struct trace_event_call *tp_event = p_event->tp_event;
+ struct hw_perf_event *hwc = &p_event->hw;
if (!(flags & PERF_EF_START))
p_event->hw.state = PERF_HES_STOPPED;
+ if (is_sampling_event(p_event)) {
+ hwc->last_period = hwc->sample_period;
+ perf_swevent_set_period(p_event);
+ }
+
/*
* If TRACE_REG_PERF_ADD returns false; no custom action was performed
* and we need to take the default action of enqueueing our event on
diff --git a/kernel/trace/trace_events.c b/kernel/trace/trace_events.c
index 7266ec2a4eea..77e68efbd43e 100644
--- a/kernel/trace/trace_events.c
+++ b/kernel/trace/trace_events.c
@@ -3149,8 +3149,6 @@ static void __trace_remove_event_call(struct trace_event_call *call)
{
event_remove(call);
trace_destroy_fields(call);
- free_event_filter(call->filter);
- call->filter = NULL;
}
static int probe_remove_event_call(struct trace_event_call *call)
diff --git a/kernel/trace/trace_events_filter.c b/kernel/trace/trace_events_filter.c
index 0c611b281a5b..78051de581e7 100644
--- a/kernel/trace/trace_events_filter.c
+++ b/kernel/trace/trace_events_filter.c
@@ -1616,7 +1616,7 @@ static int parse_pred(const char *str, void *data,
goto err_free;
}
- strncpy(num_buf, str + s, len);
+ memcpy(num_buf, str + s, len);
num_buf[len] = 0;
ret = kstrtoul(num_buf, 0, &ip);
@@ -1694,7 +1694,7 @@ static int parse_pred(const char *str, void *data,
if (!pred->regex)
goto err_mem;
pred->regex->len = len;
- strncpy(pred->regex->pattern, str + s, len);
+ memcpy(pred->regex->pattern, str + s, len);
pred->regex->pattern[len] = 0;
} else if (!strncmp(str + i, "CPUS", 4)) {
@@ -1859,7 +1859,7 @@ static int parse_pred(const char *str, void *data,
if (!pred->regex)
goto err_mem;
pred->regex->len = len;
- strncpy(pred->regex->pattern, str + s, len);
+ memcpy(pred->regex->pattern, str + s, len);
pred->regex->pattern[len] = 0;
filter_build_regex(pred);
@@ -1919,7 +1919,7 @@ static int parse_pred(const char *str, void *data,
goto err_free;
}
- strncpy(num_buf, str + s, len);
+ memcpy(num_buf, str + s, len);
num_buf[len] = 0;
/* Make sure it is a value */
diff --git a/kernel/trace/trace_events_hist.c b/kernel/trace/trace_events_hist.c
index 5f9119eb7c67..9c058aa8baf3 100644
--- a/kernel/trace/trace_events_hist.c
+++ b/kernel/trace/trace_events_hist.c
@@ -822,7 +822,7 @@ static inline void trace_synth(struct synth_event *event, u64 *var_ref_vals,
{
struct tracepoint *tp = event->tp;
- if (unlikely(atomic_read(&tp->key.enabled) > 0)) {
+ if (unlikely(static_key_enabled(&tp->key))) {
struct tracepoint_func *probe_func_ptr;
synth_probe_func_t probe_func;
void *__data;
@@ -1354,10 +1354,7 @@ static const char *hist_field_name(struct hist_field *field,
} else if (field->flags & HIST_FIELD_FL_TIMESTAMP)
field_name = "common_timestamp";
else if (field->flags & HIST_FIELD_FL_STACKTRACE) {
- if (field->field)
- field_name = field->field->name;
- else
- field_name = "common_stacktrace";
+ field_name = "common_stacktrace";
} else if (field->flags & HIST_FIELD_FL_HITCOUNT)
field_name = "hitcount";
@@ -1599,7 +1596,7 @@ static inline void save_comm(char *comm, struct task_struct *task)
return;
}
- strncpy(comm, task->comm, TASK_COMM_LEN);
+ strscpy(comm, task->comm, TASK_COMM_LEN);
}
static void hist_elt_data_free(struct hist_elt_data *elt_data)
@@ -3405,7 +3402,7 @@ static bool cond_snapshot_update(struct trace_array *tr, void *cond_data)
elt_data = context->elt->private_data;
track_elt_data = track_data->elt.private_data;
if (elt_data->comm)
- strncpy(track_elt_data->comm, elt_data->comm, TASK_COMM_LEN);
+ strscpy(track_elt_data->comm, elt_data->comm, TASK_COMM_LEN);
track_data->updated = true;
diff --git a/kernel/trace/trace_events_user.c b/kernel/trace/trace_events_user.c
index 42b0d998d103..17bcad8f79de 100644
--- a/kernel/trace/trace_events_user.c
+++ b/kernel/trace/trace_events_user.c
@@ -1676,7 +1676,7 @@ static void update_enable_bit_for(struct user_event *user)
struct tracepoint *tp = &user->tracepoint;
char status = 0;
- if (atomic_read(&tp->key.enabled) > 0) {
+ if (static_key_enabled(&tp->key)) {
struct tracepoint_func *probe_func_ptr;
user_event_func_t probe_func;
@@ -2280,7 +2280,7 @@ static ssize_t user_events_write_core(struct file *file, struct iov_iter *i)
* It's possible key.enabled disables after this check, however
* we don't mind if a few events are included in this condition.
*/
- if (likely(atomic_read(&tp->key.enabled) > 0)) {
+ if (likely(static_key_enabled(&tp->key))) {
struct tracepoint_func *probe_func_ptr;
user_event_func_t probe_func;
struct iov_iter copy;
diff --git a/kernel/trace/trace_functions.c b/kernel/trace/trace_functions.c
index 3b0cea37e029..74c353164ca1 100644
--- a/kernel/trace/trace_functions.c
+++ b/kernel/trace/trace_functions.c
@@ -176,6 +176,27 @@ static void function_trace_start(struct trace_array *tr)
tracing_reset_online_cpus(&tr->array_buffer);
}
+#ifdef CONFIG_FUNCTION_GRAPH_TRACER
+static __always_inline unsigned long
+function_get_true_parent_ip(unsigned long parent_ip, struct ftrace_regs *fregs)
+{
+ unsigned long true_parent_ip;
+ int idx = 0;
+
+ true_parent_ip = parent_ip;
+ if (unlikely(parent_ip == (unsigned long)&return_to_handler) && fregs)
+ true_parent_ip = ftrace_graph_ret_addr(current, &idx, parent_ip,
+ (unsigned long *)ftrace_regs_get_stack_pointer(fregs));
+ return true_parent_ip;
+}
+#else
+static __always_inline unsigned long
+function_get_true_parent_ip(unsigned long parent_ip, struct ftrace_regs *fregs)
+{
+ return parent_ip;
+}
+#endif
+
static void
function_trace_call(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *op, struct ftrace_regs *fregs)
@@ -184,7 +205,6 @@ function_trace_call(unsigned long ip, unsigned long parent_ip,
struct trace_array_cpu *data;
unsigned int trace_ctx;
int bit;
- int cpu;
if (unlikely(!tr->function_enabled))
return;
@@ -193,10 +213,11 @@ function_trace_call(unsigned long ip, unsigned long parent_ip,
if (bit < 0)
return;
+ parent_ip = function_get_true_parent_ip(parent_ip, fregs);
+
trace_ctx = tracing_gen_ctx();
- cpu = smp_processor_id();
- data = per_cpu_ptr(tr->array_buffer.data, cpu);
+ data = this_cpu_ptr(tr->array_buffer.data);
if (!atomic_read(&data->disabled))
trace_function(tr, ip, parent_ip, trace_ctx);
@@ -241,6 +262,7 @@ function_stack_trace_call(unsigned long ip, unsigned long parent_ip,
* recursive protection is performed.
*/
local_irq_save(flags);
+ parent_ip = function_get_true_parent_ip(parent_ip, fregs);
cpu = raw_smp_processor_id();
data = per_cpu_ptr(tr->array_buffer.data, cpu);
disabled = atomic_inc_return(&data->disabled);
@@ -300,7 +322,6 @@ function_no_repeats_trace_call(unsigned long ip, unsigned long parent_ip,
unsigned int trace_ctx;
unsigned long flags;
int bit;
- int cpu;
if (unlikely(!tr->function_enabled))
return;
@@ -309,8 +330,8 @@ function_no_repeats_trace_call(unsigned long ip, unsigned long parent_ip,
if (bit < 0)
return;
- cpu = smp_processor_id();
- data = per_cpu_ptr(tr->array_buffer.data, cpu);
+ parent_ip = function_get_true_parent_ip(parent_ip, fregs);
+ data = this_cpu_ptr(tr->array_buffer.data);
if (atomic_read(&data->disabled))
goto out;
@@ -321,7 +342,7 @@ function_no_repeats_trace_call(unsigned long ip, unsigned long parent_ip,
* TODO: think about a solution that is better than just hoping to be
* lucky.
*/
- last_info = per_cpu_ptr(tr->last_func_repeats, cpu);
+ last_info = this_cpu_ptr(tr->last_func_repeats);
if (is_repeat_check(tr, last_info, ip, parent_ip))
goto out;
@@ -356,6 +377,7 @@ function_stack_no_repeats_trace_call(unsigned long ip, unsigned long parent_ip,
* recursive protection is performed.
*/
local_irq_save(flags);
+ parent_ip = function_get_true_parent_ip(parent_ip, fregs);
cpu = raw_smp_processor_id();
data = per_cpu_ptr(tr->array_buffer.data, cpu);
disabled = atomic_inc_return(&data->disabled);
diff --git a/kernel/trace/trace_functions_graph.c b/kernel/trace/trace_functions_graph.c
index a569daaac4c4..5504b5e4e7b4 100644
--- a/kernel/trace/trace_functions_graph.c
+++ b/kernel/trace/trace_functions_graph.c
@@ -31,7 +31,10 @@ struct fgraph_data {
struct fgraph_cpu_data __percpu *cpu_data;
/* Place to preserve last processed entry. */
- struct ftrace_graph_ent_entry ent;
+ union {
+ struct ftrace_graph_ent_entry ent;
+ struct fgraph_retaddr_ent_entry rent;
+ } ent;
struct ftrace_graph_ret_entry ret;
int failed;
int cpu;
@@ -64,6 +67,10 @@ static struct tracer_opt trace_opts[] = {
/* Display function return value in hexadecimal format ? */
{ TRACER_OPT(funcgraph-retval-hex, TRACE_GRAPH_PRINT_RETVAL_HEX) },
#endif
+#ifdef CONFIG_FUNCTION_GRAPH_RETADDR
+ /* Display function return address ? */
+ { TRACER_OPT(funcgraph-retaddr, TRACE_GRAPH_PRINT_RETADDR) },
+#endif
/* Include sleep time (scheduled out) between entry and return */
{ TRACER_OPT(sleep-time, TRACE_GRAPH_SLEEP_TIME) },
@@ -83,6 +90,11 @@ static struct tracer_flags tracer_flags = {
.opts = trace_opts
};
+static bool tracer_flags_is_set(u32 flags)
+{
+ return (tracer_flags.val & flags) == flags;
+}
+
/*
* DURATION column is being also used to display IRQ signs,
* following values are used by print_graph_irq and others
@@ -102,7 +114,6 @@ int __trace_graph_entry(struct trace_array *tr,
struct ftrace_graph_ent *trace,
unsigned int trace_ctx)
{
- struct trace_event_call *call = &event_funcgraph_entry;
struct ring_buffer_event *event;
struct trace_buffer *buffer = tr->array_buffer.buffer;
struct ftrace_graph_ent_entry *entry;
@@ -113,11 +124,42 @@ int __trace_graph_entry(struct trace_array *tr,
return 0;
entry = ring_buffer_event_data(event);
entry->graph_ent = *trace;
- if (!call_filter_check_discard(call, entry, buffer, event))
- trace_buffer_unlock_commit_nostack(buffer, event);
+ trace_buffer_unlock_commit_nostack(buffer, event);
+
+ return 1;
+}
+
+#ifdef CONFIG_FUNCTION_GRAPH_RETADDR
+int __trace_graph_retaddr_entry(struct trace_array *tr,
+ struct ftrace_graph_ent *trace,
+ unsigned int trace_ctx,
+ unsigned long retaddr)
+{
+ struct ring_buffer_event *event;
+ struct trace_buffer *buffer = tr->array_buffer.buffer;
+ struct fgraph_retaddr_ent_entry *entry;
+
+ event = trace_buffer_lock_reserve(buffer, TRACE_GRAPH_RETADDR_ENT,
+ sizeof(*entry), trace_ctx);
+ if (!event)
+ return 0;
+ entry = ring_buffer_event_data(event);
+ entry->graph_ent.func = trace->func;
+ entry->graph_ent.depth = trace->depth;
+ entry->graph_ent.retaddr = retaddr;
+ trace_buffer_unlock_commit_nostack(buffer, event);
return 1;
}
+#else
+int __trace_graph_retaddr_entry(struct trace_array *tr,
+ struct ftrace_graph_ent *trace,
+ unsigned int trace_ctx,
+ unsigned long retaddr)
+{
+ return 1;
+}
+#endif
static inline int ftrace_graph_ignore_irqs(void)
{
@@ -127,12 +169,18 @@ static inline int ftrace_graph_ignore_irqs(void)
return in_hardirq();
}
+struct fgraph_times {
+ unsigned long long calltime;
+ unsigned long long sleeptime; /* may be optional! */
+};
+
int trace_graph_entry(struct ftrace_graph_ent *trace,
struct fgraph_ops *gops)
{
unsigned long *task_var = fgraph_get_task_var(gops);
struct trace_array *tr = gops->private;
struct trace_array_cpu *data;
+ struct fgraph_times *ftimes;
unsigned long flags;
unsigned int trace_ctx;
long disabled;
@@ -167,6 +215,19 @@ int trace_graph_entry(struct ftrace_graph_ent *trace,
if (ftrace_graph_ignore_irqs())
return 0;
+ if (fgraph_sleep_time) {
+ /* Only need to record the calltime */
+ ftimes = fgraph_reserve_data(gops->idx, sizeof(ftimes->calltime));
+ } else {
+ ftimes = fgraph_reserve_data(gops->idx, sizeof(*ftimes));
+ if (ftimes)
+ ftimes->sleeptime = current->ftrace_sleeptime;
+ }
+ if (!ftimes)
+ return 0;
+
+ ftimes->calltime = trace_clock_local();
+
/*
* Stop here if tracing_threshold is set. We only write function return
* events to the ring buffer.
@@ -180,7 +241,13 @@ int trace_graph_entry(struct ftrace_graph_ent *trace,
disabled = atomic_inc_return(&data->disabled);
if (likely(disabled == 1)) {
trace_ctx = tracing_gen_ctx_flags(flags);
- ret = __trace_graph_entry(tr, trace, trace_ctx);
+ if (unlikely(IS_ENABLED(CONFIG_FUNCTION_GRAPH_RETADDR) &&
+ tracer_flags_is_set(TRACE_GRAPH_PRINT_RETADDR))) {
+ unsigned long retaddr = ftrace_graph_top_ret_addr(current);
+
+ ret = __trace_graph_retaddr_entry(tr, trace, trace_ctx, retaddr);
+ } else
+ ret = __trace_graph_entry(tr, trace, trace_ctx);
} else {
ret = 0;
}
@@ -223,7 +290,6 @@ void __trace_graph_return(struct trace_array *tr,
struct ftrace_graph_ret *trace,
unsigned int trace_ctx)
{
- struct trace_event_call *call = &event_funcgraph_exit;
struct ring_buffer_event *event;
struct trace_buffer *buffer = tr->array_buffer.buffer;
struct ftrace_graph_ret_entry *entry;
@@ -234,8 +300,17 @@ void __trace_graph_return(struct trace_array *tr,
return;
entry = ring_buffer_event_data(event);
entry->ret = *trace;
- if (!call_filter_check_discard(call, entry, buffer, event))
- trace_buffer_unlock_commit_nostack(buffer, event);
+ trace_buffer_unlock_commit_nostack(buffer, event);
+}
+
+static void handle_nosleeptime(struct ftrace_graph_ret *trace,
+ struct fgraph_times *ftimes,
+ int size)
+{
+ if (fgraph_sleep_time || size < sizeof(*ftimes))
+ return;
+
+ ftimes->calltime += current->ftrace_sleeptime - ftimes->sleeptime;
}
void trace_graph_return(struct ftrace_graph_ret *trace,
@@ -244,9 +319,11 @@ void trace_graph_return(struct ftrace_graph_ret *trace,
unsigned long *task_var = fgraph_get_task_var(gops);
struct trace_array *tr = gops->private;
struct trace_array_cpu *data;
+ struct fgraph_times *ftimes;
unsigned long flags;
unsigned int trace_ctx;
long disabled;
+ int size;
int cpu;
ftrace_graph_addr_finish(gops, trace);
@@ -256,6 +333,14 @@ void trace_graph_return(struct ftrace_graph_ret *trace,
return;
}
+ ftimes = fgraph_retrieve_data(gops->idx, &size);
+ if (!ftimes)
+ return;
+
+ handle_nosleeptime(trace, ftimes, size);
+
+ trace->calltime = ftimes->calltime;
+
local_irq_save(flags);
cpu = raw_smp_processor_id();
data = per_cpu_ptr(tr->array_buffer.data, cpu);
@@ -271,6 +356,9 @@ void trace_graph_return(struct ftrace_graph_ret *trace,
static void trace_graph_thresh_return(struct ftrace_graph_ret *trace,
struct fgraph_ops *gops)
{
+ struct fgraph_times *ftimes;
+ int size;
+
ftrace_graph_addr_finish(gops, trace);
if (trace_recursion_test(TRACE_GRAPH_NOTRACE_BIT)) {
@@ -278,8 +366,16 @@ static void trace_graph_thresh_return(struct ftrace_graph_ret *trace,
return;
}
+ ftimes = fgraph_retrieve_data(gops->idx, &size);
+ if (!ftimes)
+ return;
+
+ handle_nosleeptime(trace, ftimes, size);
+
+ trace->calltime = ftimes->calltime;
+
if (tracing_thresh &&
- (trace->rettime - trace->calltime < tracing_thresh))
+ (trace->rettime - ftimes->calltime < tracing_thresh))
return;
else
trace_graph_return(trace, gops);
@@ -457,7 +553,7 @@ get_return_for_leaf(struct trace_iterator *iter,
* then we just reuse the data from before.
*/
if (data && data->failed) {
- curr = &data->ent;
+ curr = &data->ent.ent;
next = &data->ret;
} else {
@@ -487,7 +583,10 @@ get_return_for_leaf(struct trace_iterator *iter,
* Save current and next entries for later reference
* if the output fails.
*/
- data->ent = *curr;
+ if (unlikely(curr->ent.type == TRACE_GRAPH_RETADDR_ENT))
+ data->ent.rent = *(struct fgraph_retaddr_ent_entry *)curr;
+ else
+ data->ent.ent = *curr;
/*
* If the next event is not a return type, then
* we only care about what type it is. Otherwise we can
@@ -651,52 +750,96 @@ print_graph_duration(struct trace_array *tr, unsigned long long duration,
}
#ifdef CONFIG_FUNCTION_GRAPH_RETVAL
-
#define __TRACE_GRAPH_PRINT_RETVAL TRACE_GRAPH_PRINT_RETVAL
+#else
+#define __TRACE_GRAPH_PRINT_RETVAL 0
+#endif
+
+#ifdef CONFIG_FUNCTION_GRAPH_RETADDR
+#define __TRACE_GRAPH_PRINT_RETADDR TRACE_GRAPH_PRINT_RETADDR
+static void print_graph_retaddr(struct trace_seq *s, struct fgraph_retaddr_ent_entry *entry,
+ u32 trace_flags, bool comment)
+{
+ if (comment)
+ trace_seq_puts(s, " /*");
+
+ trace_seq_puts(s, " <-");
+ seq_print_ip_sym(s, entry->graph_ent.retaddr, trace_flags | TRACE_ITER_SYM_OFFSET);
+
+ if (comment)
+ trace_seq_puts(s, " */");
+}
+#else
+#define __TRACE_GRAPH_PRINT_RETADDR 0
+#define print_graph_retaddr(_seq, _entry, _tflags, _comment) do { } while (0)
+#endif
-static void print_graph_retval(struct trace_seq *s, unsigned long retval,
- bool leaf, void *func, bool hex_format)
+#if defined(CONFIG_FUNCTION_GRAPH_RETVAL) || defined(CONFIG_FUNCTION_GRAPH_RETADDR)
+
+static void print_graph_retval(struct trace_seq *s, struct ftrace_graph_ent_entry *entry,
+ struct ftrace_graph_ret *graph_ret, void *func,
+ u32 opt_flags, u32 trace_flags)
{
unsigned long err_code = 0;
+ unsigned long retval = 0;
+ bool print_retaddr = false;
+ bool print_retval = false;
+ bool hex_format = !!(opt_flags & TRACE_GRAPH_PRINT_RETVAL_HEX);
- if (retval == 0 || hex_format)
- goto done;
+#ifdef CONFIG_FUNCTION_GRAPH_RETVAL
+ retval = graph_ret->retval;
+ print_retval = !!(opt_flags & TRACE_GRAPH_PRINT_RETVAL);
+#endif
- /* Check if the return value matches the negative format */
- if (IS_ENABLED(CONFIG_64BIT) && (retval & BIT(31)) &&
- (((u64)retval) >> 32) == 0) {
- /* sign extension */
- err_code = (unsigned long)(s32)retval;
- } else {
- err_code = retval;
+#ifdef CONFIG_FUNCTION_GRAPH_RETADDR
+ print_retaddr = !!(opt_flags & TRACE_GRAPH_PRINT_RETADDR);
+#endif
+
+ if (print_retval && retval && !hex_format) {
+ /* Check if the return value matches the negative format */
+ if (IS_ENABLED(CONFIG_64BIT) && (retval & BIT(31)) &&
+ (((u64)retval) >> 32) == 0) {
+ err_code = sign_extend64(retval, 31);
+ } else {
+ err_code = retval;
+ }
+
+ if (!IS_ERR_VALUE(err_code))
+ err_code = 0;
}
- if (!IS_ERR_VALUE(err_code))
- err_code = 0;
+ if (entry) {
+ if (entry->ent.type != TRACE_GRAPH_RETADDR_ENT)
+ print_retaddr = false;
-done:
- if (leaf) {
- if (hex_format || (err_code == 0))
- trace_seq_printf(s, "%ps(); /* = 0x%lx */\n",
- func, retval);
+ trace_seq_printf(s, "%ps();", func);
+ if (print_retval || print_retaddr)
+ trace_seq_puts(s, " /*");
else
- trace_seq_printf(s, "%ps(); /* = %ld */\n",
- func, err_code);
+ trace_seq_putc(s, '\n');
} else {
+ print_retaddr = false;
+ trace_seq_printf(s, "} /* %ps", func);
+ }
+
+ if (print_retaddr)
+ print_graph_retaddr(s, (struct fgraph_retaddr_ent_entry *)entry,
+ trace_flags, false);
+
+ if (print_retval) {
if (hex_format || (err_code == 0))
- trace_seq_printf(s, "} /* %ps = 0x%lx */\n",
- func, retval);
+ trace_seq_printf(s, " ret=0x%lx", retval);
else
- trace_seq_printf(s, "} /* %ps = %ld */\n",
- func, err_code);
+ trace_seq_printf(s, " ret=%ld", err_code);
}
+
+ if (!entry || print_retval || print_retaddr)
+ trace_seq_puts(s, " */\n");
}
#else
-#define __TRACE_GRAPH_PRINT_RETVAL 0
-
-#define print_graph_retval(_seq, _retval, _leaf, _func, _format) do {} while (0)
+#define print_graph_retval(_seq, _ent, _ret, _func, _opt_flags, _trace_flags) do {} while (0)
#endif
@@ -748,14 +891,15 @@ print_graph_entry_leaf(struct trace_iterator *iter,
trace_seq_putc(s, ' ');
/*
- * Write out the function return value if the option function-retval is
- * enabled.
+ * Write out the function return value or return address
*/
- if (flags & __TRACE_GRAPH_PRINT_RETVAL)
- print_graph_retval(s, graph_ret->retval, true, (void *)func,
- !!(flags & TRACE_GRAPH_PRINT_RETVAL_HEX));
- else
+ if (flags & (__TRACE_GRAPH_PRINT_RETVAL | __TRACE_GRAPH_PRINT_RETADDR)) {
+ print_graph_retval(s, entry, graph_ret,
+ (void *)graph_ret->func + iter->tr->text_delta,
+ flags, tr->trace_flags);
+ } else {
trace_seq_printf(s, "%ps();\n", (void *)func);
+ }
print_graph_irq(iter, graph_ret->func, TRACE_GRAPH_RET,
cpu, iter->ent->pid, flags);
@@ -796,7 +940,12 @@ print_graph_entry_nested(struct trace_iterator *iter,
func = call->func + iter->tr->text_delta;
- trace_seq_printf(s, "%ps() {\n", (void *)func);
+ trace_seq_printf(s, "%ps() {", (void *)func);
+ if (flags & __TRACE_GRAPH_PRINT_RETADDR &&
+ entry->ent.type == TRACE_GRAPH_RETADDR_ENT)
+ print_graph_retaddr(s, (struct fgraph_retaddr_ent_entry *)entry,
+ tr->trace_flags, true);
+ trace_seq_putc(s, '\n');
if (trace_seq_has_overflowed(s))
return TRACE_TYPE_PARTIAL_LINE;
@@ -1043,11 +1192,10 @@ print_graph_return(struct ftrace_graph_ret *trace, struct trace_seq *s,
/*
* Always write out the function name and its return value if the
- * function-retval option is enabled.
+ * funcgraph-retval option is enabled.
*/
if (flags & __TRACE_GRAPH_PRINT_RETVAL) {
- print_graph_retval(s, trace->retval, false, (void *)func,
- !!(flags & TRACE_GRAPH_PRINT_RETVAL_HEX));
+ print_graph_retval(s, NULL, trace, (void *)func, flags, tr->trace_flags);
} else {
/*
* If the return function does not have a matching entry,
@@ -1162,7 +1310,7 @@ print_graph_function_flags(struct trace_iterator *iter, u32 flags)
* to print out the missing entry which would never go out.
*/
if (data && data->failed) {
- field = &data->ent;
+ field = &data->ent.ent;
iter->cpu = data->cpu;
ret = print_graph_entry(field, s, iter, flags);
if (ret == TRACE_TYPE_HANDLED && iter->cpu != cpu) {
@@ -1186,6 +1334,16 @@ print_graph_function_flags(struct trace_iterator *iter, u32 flags)
saved = *field;
return print_graph_entry(&saved, s, iter, flags);
}
+#ifdef CONFIG_FUNCTION_GRAPH_RETADDR
+ case TRACE_GRAPH_RETADDR_ENT: {
+ struct fgraph_retaddr_ent_entry saved;
+ struct fgraph_retaddr_ent_entry *rfield;
+
+ trace_assign_type(rfield, entry);
+ saved = *rfield;
+ return print_graph_entry((struct ftrace_graph_ent_entry *)&saved, s, iter, flags);
+ }
+#endif
case TRACE_GRAPH_RET: {
struct ftrace_graph_ret_entry *field;
trace_assign_type(field, entry);
@@ -1380,6 +1538,13 @@ static struct trace_event graph_trace_entry_event = {
.funcs = &graph_functions,
};
+#ifdef CONFIG_FUNCTION_GRAPH_RETADDR
+static struct trace_event graph_trace_retaddr_entry_event = {
+ .type = TRACE_GRAPH_RETADDR_ENT,
+ .funcs = &graph_functions,
+};
+#endif
+
static struct trace_event graph_trace_ret_event = {
.type = TRACE_GRAPH_RET,
.funcs = &graph_functions
@@ -1466,6 +1631,13 @@ static __init int init_graph_trace(void)
return 1;
}
+#ifdef CONFIG_FUNCTION_GRAPH_RETADDR
+ if (!register_trace_event(&graph_trace_retaddr_entry_event)) {
+ pr_warn("Warning: could not register graph trace retaddr events\n");
+ return 1;
+ }
+#endif
+
if (!register_trace_event(&graph_trace_ret_event)) {
pr_warn("Warning: could not register graph trace events\n");
return 1;
diff --git a/kernel/trace/trace_hwlat.c b/kernel/trace/trace_hwlat.c
index 3bd6071441ad..b65353ec2837 100644
--- a/kernel/trace/trace_hwlat.c
+++ b/kernel/trace/trace_hwlat.c
@@ -130,7 +130,6 @@ static bool hwlat_busy;
static void trace_hwlat_sample(struct hwlat_sample *sample)
{
struct trace_array *tr = hwlat_trace;
- struct trace_event_call *call = &event_hwlat;
struct trace_buffer *buffer = tr->array_buffer.buffer;
struct ring_buffer_event *event;
struct hwlat_entry *entry;
@@ -148,8 +147,7 @@ static void trace_hwlat_sample(struct hwlat_sample *sample)
entry->nmi_count = sample->nmi_count;
entry->count = sample->count;
- if (!call_filter_check_discard(call, entry, buffer, event))
- trace_buffer_unlock_commit_nostack(buffer, event);
+ trace_buffer_unlock_commit_nostack(buffer, event);
}
/* Macros to encapsulate the time capturing infrastructure */
diff --git a/kernel/trace/trace_kdb.c b/kernel/trace/trace_kdb.c
index 59857a1ee44c..1e72d20b3c2f 100644
--- a/kernel/trace/trace_kdb.c
+++ b/kernel/trace/trace_kdb.c
@@ -96,22 +96,19 @@ static int kdb_ftdump(int argc, const char **argv)
{
int skip_entries = 0;
long cpu_file;
- char *cp;
+ int err;
int cnt;
int cpu;
if (argc > 2)
return KDB_ARGCOUNT;
- if (argc) {
- skip_entries = simple_strtol(argv[1], &cp, 0);
- if (*cp)
- skip_entries = 0;
- }
+ if (argc && kstrtoint(argv[1], 0, &skip_entries))
+ return KDB_BADINT;
if (argc == 2) {
- cpu_file = simple_strtol(argv[2], &cp, 0);
- if (*cp || cpu_file >= NR_CPUS || cpu_file < 0 ||
+ err = kstrtol(argv[2], 0, &cpu_file);
+ if (err || cpu_file >= NR_CPUS || cpu_file < 0 ||
!cpu_online(cpu_file))
return KDB_BADINT;
} else {
diff --git a/kernel/trace/trace_mmiotrace.c b/kernel/trace/trace_mmiotrace.c
index 64e77b513697..ba5858866b2f 100644
--- a/kernel/trace/trace_mmiotrace.c
+++ b/kernel/trace/trace_mmiotrace.c
@@ -294,7 +294,6 @@ static void __trace_mmiotrace_rw(struct trace_array *tr,
struct trace_array_cpu *data,
struct mmiotrace_rw *rw)
{
- struct trace_event_call *call = &event_mmiotrace_rw;
struct trace_buffer *buffer = tr->array_buffer.buffer;
struct ring_buffer_event *event;
struct trace_mmiotrace_rw *entry;
@@ -310,8 +309,7 @@ static void __trace_mmiotrace_rw(struct trace_array *tr,
entry = ring_buffer_event_data(event);
entry->rw = *rw;
- if (!call_filter_check_discard(call, entry, buffer, event))
- trace_buffer_unlock_commit(tr, buffer, event, trace_ctx);
+ trace_buffer_unlock_commit(tr, buffer, event, trace_ctx);
}
void mmio_trace_rw(struct mmiotrace_rw *rw)
@@ -325,7 +323,6 @@ static void __trace_mmiotrace_map(struct trace_array *tr,
struct trace_array_cpu *data,
struct mmiotrace_map *map)
{
- struct trace_event_call *call = &event_mmiotrace_map;
struct trace_buffer *buffer = tr->array_buffer.buffer;
struct ring_buffer_event *event;
struct trace_mmiotrace_map *entry;
@@ -341,8 +338,7 @@ static void __trace_mmiotrace_map(struct trace_array *tr,
entry = ring_buffer_event_data(event);
entry->map = *map;
- if (!call_filter_check_discard(call, entry, buffer, event))
- trace_buffer_unlock_commit(tr, buffer, event, trace_ctx);
+ trace_buffer_unlock_commit(tr, buffer, event, trace_ctx);
}
void mmio_trace_mapping(struct mmiotrace_map *map)
diff --git a/kernel/trace/trace_osnoise.c b/kernel/trace/trace_osnoise.c
index a50ed23bee77..b9f96c77527d 100644
--- a/kernel/trace/trace_osnoise.c
+++ b/kernel/trace/trace_osnoise.c
@@ -499,7 +499,6 @@ static void print_osnoise_headers(struct seq_file *s)
static void
__trace_osnoise_sample(struct osnoise_sample *sample, struct trace_buffer *buffer)
{
- struct trace_event_call *call = &event_osnoise;
struct ring_buffer_event *event;
struct osnoise_entry *entry;
@@ -517,8 +516,7 @@ __trace_osnoise_sample(struct osnoise_sample *sample, struct trace_buffer *buffe
entry->softirq_count = sample->softirq_count;
entry->thread_count = sample->thread_count;
- if (!call_filter_check_discard(call, entry, buffer, event))
- trace_buffer_unlock_commit_nostack(buffer, event);
+ trace_buffer_unlock_commit_nostack(buffer, event);
}
/*
@@ -578,7 +576,6 @@ static void print_timerlat_headers(struct seq_file *s)
static void
__trace_timerlat_sample(struct timerlat_sample *sample, struct trace_buffer *buffer)
{
- struct trace_event_call *call = &event_osnoise;
struct ring_buffer_event *event;
struct timerlat_entry *entry;
@@ -591,8 +588,7 @@ __trace_timerlat_sample(struct timerlat_sample *sample, struct trace_buffer *buf
entry->context = sample->context;
entry->timer_latency = sample->timer_latency;
- if (!call_filter_check_discard(call, entry, buffer, event))
- trace_buffer_unlock_commit_nostack(buffer, event);
+ trace_buffer_unlock_commit_nostack(buffer, event);
}
/*
@@ -654,7 +650,6 @@ static void timerlat_save_stack(int skip)
static void
__timerlat_dump_stack(struct trace_buffer *buffer, struct trace_stack *fstack, unsigned int size)
{
- struct trace_event_call *call = &event_osnoise;
struct ring_buffer_event *event;
struct stack_entry *entry;
@@ -668,8 +663,7 @@ __timerlat_dump_stack(struct trace_buffer *buffer, struct trace_stack *fstack, u
memcpy(&entry->caller, fstack->calls, size);
entry->size = fstack->nr_entries;
- if (!call_filter_check_discard(call, entry, buffer, event))
- trace_buffer_unlock_commit_nostack(buffer, event);
+ trace_buffer_unlock_commit_nostack(buffer, event);
}
/*
diff --git a/kernel/trace/trace_output.c b/kernel/trace/trace_output.c
index 868f2f912f28..e08aee34ef63 100644
--- a/kernel/trace/trace_output.c
+++ b/kernel/trace/trace_output.c
@@ -460,7 +460,6 @@ int trace_print_lat_fmt(struct trace_seq *s, struct trace_entry *entry)
(entry->flags & TRACE_FLAG_IRQS_OFF && bh_off) ? 'D' :
(entry->flags & TRACE_FLAG_IRQS_OFF) ? 'd' :
bh_off ? 'b' :
- (entry->flags & TRACE_FLAG_IRQS_NOSUPPORT) ? 'X' :
'.';
switch (entry->flags & (TRACE_FLAG_NEED_RESCHED |
@@ -1246,6 +1245,10 @@ static enum print_line_t trace_stack_print(struct trace_iterator *iter,
break;
trace_seq_puts(s, " => ");
+ if ((*p) == FTRACE_TRAMPOLINE_MARKER) {
+ trace_seq_puts(s, "[FTRACE TRAMPOLINE]\n");
+ continue;
+ }
seq_print_ip_sym(s, (*p) + delta, flags);
trace_seq_putc(s, '\n');
}
diff --git a/kernel/trace/trace_preemptirq.c b/kernel/trace/trace_preemptirq.c
index e37446f7916e..5c03633316a6 100644
--- a/kernel/trace/trace_preemptirq.c
+++ b/kernel/trace/trace_preemptirq.c
@@ -15,20 +15,6 @@
#define CREATE_TRACE_POINTS
#include <trace/events/preemptirq.h>
-/*
- * Use regular trace points on architectures that implement noinstr
- * tooling: these calls will only happen with RCU enabled, which can
- * use a regular tracepoint.
- *
- * On older architectures, use the rcuidle tracing methods (which
- * aren't NMI-safe - so exclude NMI contexts):
- */
-#ifdef CONFIG_ARCH_WANTS_NO_INSTR
-#define trace(point) trace_##point
-#else
-#define trace(point) if (!in_nmi()) trace_##point##_rcuidle
-#endif
-
#ifdef CONFIG_TRACE_IRQFLAGS
/* Per-cpu variable to prevent redundant calls when IRQs already off */
static DEFINE_PER_CPU(int, tracing_irq_cpu);
@@ -42,7 +28,7 @@ static DEFINE_PER_CPU(int, tracing_irq_cpu);
void trace_hardirqs_on_prepare(void)
{
if (this_cpu_read(tracing_irq_cpu)) {
- trace(irq_enable)(CALLER_ADDR0, CALLER_ADDR1);
+ trace_irq_enable(CALLER_ADDR0, CALLER_ADDR1);
tracer_hardirqs_on(CALLER_ADDR0, CALLER_ADDR1);
this_cpu_write(tracing_irq_cpu, 0);
}
@@ -53,7 +39,7 @@ NOKPROBE_SYMBOL(trace_hardirqs_on_prepare);
void trace_hardirqs_on(void)
{
if (this_cpu_read(tracing_irq_cpu)) {
- trace(irq_enable)(CALLER_ADDR0, CALLER_ADDR1);
+ trace_irq_enable(CALLER_ADDR0, CALLER_ADDR1);
tracer_hardirqs_on(CALLER_ADDR0, CALLER_ADDR1);
this_cpu_write(tracing_irq_cpu, 0);
}
@@ -75,7 +61,7 @@ void trace_hardirqs_off_finish(void)
if (!this_cpu_read(tracing_irq_cpu)) {
this_cpu_write(tracing_irq_cpu, 1);
tracer_hardirqs_off(CALLER_ADDR0, CALLER_ADDR1);
- trace(irq_disable)(CALLER_ADDR0, CALLER_ADDR1);
+ trace_irq_disable(CALLER_ADDR0, CALLER_ADDR1);
}
}
@@ -89,7 +75,7 @@ void trace_hardirqs_off(void)
if (!this_cpu_read(tracing_irq_cpu)) {
this_cpu_write(tracing_irq_cpu, 1);
tracer_hardirqs_off(CALLER_ADDR0, CALLER_ADDR1);
- trace(irq_disable)(CALLER_ADDR0, CALLER_ADDR1);
+ trace_irq_disable(CALLER_ADDR0, CALLER_ADDR1);
}
}
EXPORT_SYMBOL(trace_hardirqs_off);
@@ -100,13 +86,13 @@ NOKPROBE_SYMBOL(trace_hardirqs_off);
void trace_preempt_on(unsigned long a0, unsigned long a1)
{
- trace(preempt_enable)(a0, a1);
+ trace_preempt_enable(a0, a1);
tracer_preempt_on(a0, a1);
}
void trace_preempt_off(unsigned long a0, unsigned long a1)
{
- trace(preempt_disable)(a0, a1);
+ trace_preempt_disable(a0, a1);
tracer_preempt_off(a0, a1);
}
#endif
diff --git a/kernel/trace/trace_sched_switch.c b/kernel/trace/trace_sched_switch.c
index 8a407adb0e1c..573b5d8e8a28 100644
--- a/kernel/trace/trace_sched_switch.c
+++ b/kernel/trace/trace_sched_switch.c
@@ -187,7 +187,7 @@ static inline char *get_saved_cmdlines(int idx)
static inline void set_cmdline(int idx, const char *cmdline)
{
- strncpy(get_saved_cmdlines(idx), cmdline, TASK_COMM_LEN);
+ strscpy(get_saved_cmdlines(idx), cmdline, TASK_COMM_LEN);
}
static void free_saved_cmdlines_buffer(struct saved_cmdlines_buffer *s)
diff --git a/kernel/trace/trace_sched_wakeup.c b/kernel/trace/trace_sched_wakeup.c
index ae2ace5e515a..d6c7f18daa15 100644
--- a/kernel/trace/trace_sched_wakeup.c
+++ b/kernel/trace/trace_sched_wakeup.c
@@ -378,7 +378,6 @@ tracing_sched_switch_trace(struct trace_array *tr,
struct task_struct *next,
unsigned int trace_ctx)
{
- struct trace_event_call *call = &event_context_switch;
struct trace_buffer *buffer = tr->array_buffer.buffer;
struct ring_buffer_event *event;
struct ctx_switch_entry *entry;
@@ -396,8 +395,7 @@ tracing_sched_switch_trace(struct trace_array *tr,
entry->next_state = task_state_index(next);
entry->next_cpu = task_cpu(next);
- if (!call_filter_check_discard(call, entry, buffer, event))
- trace_buffer_unlock_commit(tr, buffer, event, trace_ctx);
+ trace_buffer_unlock_commit(tr, buffer, event, trace_ctx);
}
static void
@@ -406,7 +404,6 @@ tracing_sched_wakeup_trace(struct trace_array *tr,
struct task_struct *curr,
unsigned int trace_ctx)
{
- struct trace_event_call *call = &event_wakeup;
struct ring_buffer_event *event;
struct ctx_switch_entry *entry;
struct trace_buffer *buffer = tr->array_buffer.buffer;
@@ -424,8 +421,7 @@ tracing_sched_wakeup_trace(struct trace_array *tr,
entry->next_state = task_state_index(wakee);
entry->next_cpu = task_cpu(wakee);
- if (!call_filter_check_discard(call, entry, buffer, event))
- trace_buffer_unlock_commit(tr, buffer, event, trace_ctx);
+ trace_buffer_unlock_commit(tr, buffer, event, trace_ctx);
}
static void notrace
diff --git a/kernel/trace/trace_selftest.c b/kernel/trace/trace_selftest.c
index 1469dd8075fa..38b5754790c9 100644
--- a/kernel/trace/trace_selftest.c
+++ b/kernel/trace/trace_selftest.c
@@ -17,6 +17,7 @@ static inline int trace_valid_entry(struct trace_entry *entry)
case TRACE_PRINT:
case TRACE_BRANCH:
case TRACE_GRAPH_ENT:
+ case TRACE_GRAPH_RETADDR_ENT:
case TRACE_GRAPH_RET:
return 1;
}
diff --git a/kernel/trace/trace_syscalls.c b/kernel/trace/trace_syscalls.c
index 785733245ead..46aab0ab9350 100644
--- a/kernel/trace/trace_syscalls.c
+++ b/kernel/trace/trace_syscalls.c
@@ -299,6 +299,13 @@ static void ftrace_syscall_enter(void *data, struct pt_regs *regs, long id)
int syscall_nr;
int size;
+ /*
+ * Syscall probe called with preemption enabled, but the ring
+ * buffer and per-cpu data require preemption to be disabled.
+ */
+ might_fault();
+ guard(preempt_notrace)();
+
syscall_nr = trace_get_syscall_nr(current, regs);
if (syscall_nr < 0 || syscall_nr >= NR_syscalls)
return;
@@ -338,6 +345,13 @@ static void ftrace_syscall_exit(void *data, struct pt_regs *regs, long ret)
struct trace_event_buffer fbuffer;
int syscall_nr;
+ /*
+ * Syscall probe called with preemption enabled, but the ring
+ * buffer and per-cpu data require preemption to be disabled.
+ */
+ might_fault();
+ guard(preempt_notrace)();
+
syscall_nr = trace_get_syscall_nr(current, regs);
if (syscall_nr < 0 || syscall_nr >= NR_syscalls)
return;
@@ -584,6 +598,13 @@ static void perf_syscall_enter(void *ignore, struct pt_regs *regs, long id)
int rctx;
int size;
+ /*
+ * Syscall probe called with preemption enabled, but the ring
+ * buffer and per-cpu data require preemption to be disabled.
+ */
+ might_fault();
+ guard(preempt_notrace)();
+
syscall_nr = trace_get_syscall_nr(current, regs);
if (syscall_nr < 0 || syscall_nr >= NR_syscalls)
return;
@@ -686,6 +707,13 @@ static void perf_syscall_exit(void *ignore, struct pt_regs *regs, long ret)
int rctx;
int size;
+ /*
+ * Syscall probe called with preemption enabled, but the ring
+ * buffer and per-cpu data require preemption to be disabled.
+ */
+ might_fault();
+ guard(preempt_notrace)();
+
syscall_nr = trace_get_syscall_nr(current, regs);
if (syscall_nr < 0 || syscall_nr >= NR_syscalls)
return;
diff --git a/kernel/trace/trace_uprobe.c b/kernel/trace/trace_uprobe.c
index b30fc8fcd095..fed382b7881b 100644
--- a/kernel/trace/trace_uprobe.c
+++ b/kernel/trace/trace_uprobe.c
@@ -89,9 +89,11 @@ static struct trace_uprobe *to_trace_uprobe(struct dyn_event *ev)
static int register_uprobe_event(struct trace_uprobe *tu);
static int unregister_uprobe_event(struct trace_uprobe *tu);
-static int uprobe_dispatcher(struct uprobe_consumer *con, struct pt_regs *regs);
+static int uprobe_dispatcher(struct uprobe_consumer *con, struct pt_regs *regs,
+ __u64 *data);
static int uretprobe_dispatcher(struct uprobe_consumer *con,
- unsigned long func, struct pt_regs *regs);
+ unsigned long func, struct pt_regs *regs,
+ __u64 *data);
#ifdef CONFIG_STACK_GROWSUP
static unsigned long adjust_stack_addr(unsigned long addr, unsigned int n)
@@ -1522,7 +1524,8 @@ trace_uprobe_register(struct trace_event_call *event, enum trace_reg type,
}
}
-static int uprobe_dispatcher(struct uprobe_consumer *con, struct pt_regs *regs)
+static int uprobe_dispatcher(struct uprobe_consumer *con, struct pt_regs *regs,
+ __u64 *data)
{
struct trace_uprobe *tu;
struct uprobe_dispatch_data udd;
@@ -1553,7 +1556,8 @@ static int uprobe_dispatcher(struct uprobe_consumer *con, struct pt_regs *regs)
}
static int uretprobe_dispatcher(struct uprobe_consumer *con,
- unsigned long func, struct pt_regs *regs)
+ unsigned long func, struct pt_regs *regs,
+ __u64 *data)
{
struct trace_uprobe *tu;
struct uprobe_dispatch_data udd;
diff --git a/kernel/tracepoint.c b/kernel/tracepoint.c
index 8879da16ef4d..1848ce7e2976 100644
--- a/kernel/tracepoint.c
+++ b/kernel/tracepoint.c
@@ -25,9 +25,6 @@ enum tp_func_state {
extern tracepoint_ptr_t __start___tracepoints_ptrs[];
extern tracepoint_ptr_t __stop___tracepoints_ptrs[];
-DEFINE_SRCU(tracepoint_srcu);
-EXPORT_SYMBOL_GPL(tracepoint_srcu);
-
enum tp_transition_sync {
TP_TRANSITION_SYNC_1_0_1,
TP_TRANSITION_SYNC_N_2_1,
@@ -37,7 +34,6 @@ enum tp_transition_sync {
struct tp_transition_snapshot {
unsigned long rcu;
- unsigned long srcu;
bool ongoing;
};
@@ -50,7 +46,6 @@ static void tp_rcu_get_state(enum tp_transition_sync sync)
/* Keep the latest get_state snapshot. */
snapshot->rcu = get_state_synchronize_rcu();
- snapshot->srcu = start_poll_synchronize_srcu(&tracepoint_srcu);
snapshot->ongoing = true;
}
@@ -61,8 +56,6 @@ static void tp_rcu_cond_sync(enum tp_transition_sync sync)
if (!snapshot->ongoing)
return;
cond_synchronize_rcu(snapshot->rcu);
- if (!poll_state_synchronize_srcu(&tracepoint_srcu, snapshot->srcu))
- synchronize_srcu(&tracepoint_srcu);
snapshot->ongoing = false;
}
@@ -85,9 +78,6 @@ static LIST_HEAD(tracepoint_module_list);
*/
static DEFINE_MUTEX(tracepoints_mutex);
-static struct rcu_head *early_probes;
-static bool ok_to_free_tracepoints;
-
/*
* Note about RCU :
* It is used to delay the free of multiple probes array until a quiescent
@@ -111,57 +101,21 @@ static inline void *allocate_probes(int count)
return p == NULL ? NULL : p->probes;
}
-static void srcu_free_old_probes(struct rcu_head *head)
-{
- kfree(container_of(head, struct tp_probes, rcu));
-}
-
static void rcu_free_old_probes(struct rcu_head *head)
{
- call_srcu(&tracepoint_srcu, head, srcu_free_old_probes);
-}
-
-static __init int release_early_probes(void)
-{
- struct rcu_head *tmp;
-
- ok_to_free_tracepoints = true;
-
- while (early_probes) {
- tmp = early_probes;
- early_probes = tmp->next;
- call_rcu(tmp, rcu_free_old_probes);
- }
-
- return 0;
+ kfree(container_of(head, struct tp_probes, rcu));
}
-/* SRCU is initialized at core_initcall */
-postcore_initcall(release_early_probes);
-
-static inline void release_probes(struct tracepoint_func *old)
+static inline void release_probes(struct tracepoint *tp, struct tracepoint_func *old)
{
if (old) {
struct tp_probes *tp_probes = container_of(old,
struct tp_probes, probes[0]);
- /*
- * We can't free probes if SRCU is not initialized yet.
- * Postpone the freeing till after SRCU is initialized.
- */
- if (unlikely(!ok_to_free_tracepoints)) {
- tp_probes->rcu.next = early_probes;
- early_probes = &tp_probes->rcu;
- return;
- }
-
- /*
- * Tracepoint probes are protected by both sched RCU and SRCU,
- * by calling the SRCU callback in the sched RCU callback we
- * cover both cases. So let us chain the SRCU and sched RCU
- * callbacks to wait for both grace periods.
- */
- call_rcu(&tp_probes->rcu, rcu_free_old_probes);
+ if (tracepoint_is_faultable(tp))
+ call_rcu_tasks_trace(&tp_probes->rcu, rcu_free_old_probes);
+ else
+ call_rcu(&tp_probes->rcu, rcu_free_old_probes);
}
}
@@ -327,8 +281,8 @@ static int tracepoint_add_func(struct tracepoint *tp,
struct tracepoint_func *old, *tp_funcs;
int ret;
- if (tp->regfunc && !static_key_enabled(&tp->key)) {
- ret = tp->regfunc();
+ if (tp->ext && tp->ext->regfunc && !static_key_enabled(&tp->key)) {
+ ret = tp->ext->regfunc();
if (ret < 0)
return ret;
}
@@ -358,7 +312,7 @@ static int tracepoint_add_func(struct tracepoint *tp,
tracepoint_update_call(tp, tp_funcs);
/* Both iterator and static call handle NULL tp->funcs */
rcu_assign_pointer(tp->funcs, tp_funcs);
- static_key_enable(&tp->key);
+ static_branch_enable(&tp->key);
break;
case TP_FUNC_2: /* 1->2 */
/* Set iterator static call */
@@ -383,7 +337,7 @@ static int tracepoint_add_func(struct tracepoint *tp,
break;
}
- release_probes(old);
+ release_probes(tp, old);
return 0;
}
@@ -411,10 +365,9 @@ static int tracepoint_remove_func(struct tracepoint *tp,
switch (nr_func_state(tp_funcs)) {
case TP_FUNC_0: /* 1->0 */
/* Removed last function */
- if (tp->unregfunc && static_key_enabled(&tp->key))
- tp->unregfunc();
-
- static_key_disable(&tp->key);
+ if (tp->ext && tp->ext->unregfunc && static_key_enabled(&tp->key))
+ tp->ext->unregfunc();
+ static_branch_disable(&tp->key);
/* Set iterator static call */
tracepoint_update_call(tp, tp_funcs);
/* Both iterator and static call handle NULL tp->funcs */
@@ -455,7 +408,7 @@ static int tracepoint_remove_func(struct tracepoint *tp,
WARN_ON_ONCE(1);
break;
}
- release_probes(old);
+ release_probes(tp, old);
return 0;
}
diff --git a/kernel/ucount.c b/kernel/ucount.c
index 696406939be5..f950b5e59d63 100644
--- a/kernel/ucount.c
+++ b/kernel/ucount.c
@@ -70,7 +70,7 @@ static long ue_int_max = INT_MAX;
.extra1 = &ue_zero, \
.extra2 = &ue_int_max, \
}
-static struct ctl_table user_table[] = {
+static const struct ctl_table user_table[] = {
UCOUNT_ENTRY("max_user_namespaces"),
UCOUNT_ENTRY("max_pid_namespaces"),
UCOUNT_ENTRY("max_uts_namespaces"),
diff --git a/kernel/umh.c b/kernel/umh.c
index ff1f13a27d29..be9234270777 100644
--- a/kernel/umh.c
+++ b/kernel/umh.c
@@ -13,7 +13,6 @@
#include <linux/completion.h>
#include <linux/cred.h>
#include <linux/file.h>
-#include <linux/fdtable.h>
#include <linux/fs_struct.h>
#include <linux/workqueue.h>
#include <linux/security.h>
diff --git a/kernel/watch_queue.c b/kernel/watch_queue.c
index d36242fd4936..1895fbc32bcb 100644
--- a/kernel/watch_queue.c
+++ b/kernel/watch_queue.c
@@ -663,16 +663,14 @@ struct watch_queue *get_watch_queue(int fd)
{
struct pipe_inode_info *pipe;
struct watch_queue *wqueue = ERR_PTR(-EINVAL);
- struct fd f;
+ CLASS(fd, f)(fd);
- f = fdget(fd);
- if (fd_file(f)) {
+ if (!fd_empty(f)) {
pipe = get_pipe_info(fd_file(f), false);
if (pipe && pipe->watch_queue) {
wqueue = pipe->watch_queue;
kref_get(&wqueue->usage);
}
- fdput(f);
}
return wqueue;
diff --git a/kernel/watchdog.c b/kernel/watchdog.c
index 262691ba62b7..5a93d4c446b8 100644
--- a/kernel/watchdog.c
+++ b/kernel/watchdog.c
@@ -644,6 +644,14 @@ static int is_softlockup(unsigned long touch_ts,
need_counting_irqs())
start_counting_irqs();
+ /*
+ * A poorly behaving BPF scheduler can live-lock the system into
+ * soft lockups. Tell sched_ext to try ejecting the BPF
+ * scheduler when close to a soft lockup.
+ */
+ if (time_after_eq(now, period_ts + get_softlockup_thresh() * 3 / 4))
+ scx_softlockup(now - touch_ts);
+
/* Warn about unreasonable delays. */
if (time_after(now, period_ts + get_softlockup_thresh()))
return now - touch_ts;
diff --git a/kernel/workqueue.c b/kernel/workqueue.c
index 9949ffad8df0..8b07576814a5 100644
--- a/kernel/workqueue.c
+++ b/kernel/workqueue.c
@@ -3833,16 +3833,28 @@ static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
{
bool wait = false;
struct pool_workqueue *pwq;
+ struct worker_pool *current_pool = NULL;
if (flush_color >= 0) {
WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
atomic_set(&wq->nr_pwqs_to_flush, 1);
}
+ /*
+ * For unbound workqueue, pwqs will map to only a few pools.
+ * Most of the time, pwqs within the same pool will be linked
+ * sequentially to wq->pwqs by cpu index. So in the majority
+ * of pwq iters, the pool is the same, only doing lock/unlock
+ * if the pool has changed. This can largely reduce expensive
+ * lock operations.
+ */
for_each_pwq(pwq, wq) {
- struct worker_pool *pool = pwq->pool;
-
- raw_spin_lock_irq(&pool->lock);
+ if (current_pool != pwq->pool) {
+ if (likely(current_pool))
+ raw_spin_unlock_irq(&current_pool->lock);
+ current_pool = pwq->pool;
+ raw_spin_lock_irq(&current_pool->lock);
+ }
if (flush_color >= 0) {
WARN_ON_ONCE(pwq->flush_color != -1);
@@ -3859,9 +3871,11 @@ static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
pwq->work_color = work_color;
}
- raw_spin_unlock_irq(&pool->lock);
}
+ if (current_pool)
+ raw_spin_unlock_irq(&current_pool->lock);
+
if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
complete(&wq->first_flusher->done);