aboutsummaryrefslogtreecommitdiff
path: root/kernel/bpf/memalloc.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/bpf/memalloc.c')
-rw-r--r--kernel/bpf/memalloc.c526
1 files changed, 416 insertions, 110 deletions
diff --git a/kernel/bpf/memalloc.c b/kernel/bpf/memalloc.c
index 0668bcd7c926..6a51cfe4c2d6 100644
--- a/kernel/bpf/memalloc.c
+++ b/kernel/bpf/memalloc.c
@@ -98,11 +98,23 @@ struct bpf_mem_cache {
int free_cnt;
int low_watermark, high_watermark, batch;
int percpu_size;
+ bool draining;
+ struct bpf_mem_cache *tgt;
- struct rcu_head rcu;
+ /* list of objects to be freed after RCU GP */
struct llist_head free_by_rcu;
+ struct llist_node *free_by_rcu_tail;
struct llist_head waiting_for_gp;
+ struct llist_node *waiting_for_gp_tail;
+ struct rcu_head rcu;
atomic_t call_rcu_in_progress;
+ struct llist_head free_llist_extra_rcu;
+
+ /* list of objects to be freed after RCU tasks trace GP */
+ struct llist_head free_by_rcu_ttrace;
+ struct llist_head waiting_for_gp_ttrace;
+ struct rcu_head rcu_ttrace;
+ atomic_t call_rcu_ttrace_in_progress;
};
struct bpf_mem_caches {
@@ -153,59 +165,87 @@ static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c)
#endif
}
+static void inc_active(struct bpf_mem_cache *c, unsigned long *flags)
+{
+ if (IS_ENABLED(CONFIG_PREEMPT_RT))
+ /* In RT irq_work runs in per-cpu kthread, so disable
+ * interrupts to avoid preemption and interrupts and
+ * reduce the chance of bpf prog executing on this cpu
+ * when active counter is busy.
+ */
+ local_irq_save(*flags);
+ /* alloc_bulk runs from irq_work which will not preempt a bpf
+ * program that does unit_alloc/unit_free since IRQs are
+ * disabled there. There is no race to increment 'active'
+ * counter. It protects free_llist from corruption in case NMI
+ * bpf prog preempted this loop.
+ */
+ WARN_ON_ONCE(local_inc_return(&c->active) != 1);
+}
+
+static void dec_active(struct bpf_mem_cache *c, unsigned long *flags)
+{
+ local_dec(&c->active);
+ if (IS_ENABLED(CONFIG_PREEMPT_RT))
+ local_irq_restore(*flags);
+}
+
+static void add_obj_to_free_list(struct bpf_mem_cache *c, void *obj)
+{
+ unsigned long flags;
+
+ inc_active(c, &flags);
+ __llist_add(obj, &c->free_llist);
+ c->free_cnt++;
+ dec_active(c, &flags);
+}
+
/* Mostly runs from irq_work except __init phase. */
-static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node)
+static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node, bool atomic)
{
struct mem_cgroup *memcg = NULL, *old_memcg;
- unsigned long flags;
+ gfp_t gfp;
void *obj;
int i;
- memcg = get_memcg(c);
- old_memcg = set_active_memcg(memcg);
+ gfp = __GFP_NOWARN | __GFP_ACCOUNT;
+ gfp |= atomic ? GFP_NOWAIT : GFP_KERNEL;
+
for (i = 0; i < cnt; i++) {
/*
- * free_by_rcu is only manipulated by irq work refill_work().
- * IRQ works on the same CPU are called sequentially, so it is
- * safe to use __llist_del_first() here. If alloc_bulk() is
- * invoked by the initial prefill, there will be no running
- * refill_work(), so __llist_del_first() is fine as well.
- *
- * In most cases, objects on free_by_rcu are from the same CPU.
- * If some objects come from other CPUs, it doesn't incur any
- * harm because NUMA_NO_NODE means the preference for current
- * numa node and it is not a guarantee.
+ * For every 'c' llist_del_first(&c->free_by_rcu_ttrace); is
+ * done only by one CPU == current CPU. Other CPUs might
+ * llist_add() and llist_del_all() in parallel.
*/
- obj = __llist_del_first(&c->free_by_rcu);
- if (!obj) {
- /* Allocate, but don't deplete atomic reserves that typical
- * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc
- * will allocate from the current numa node which is what we
- * want here.
- */
- obj = __alloc(c, node, GFP_NOWAIT | __GFP_NOWARN | __GFP_ACCOUNT);
- if (!obj)
- break;
- }
- if (IS_ENABLED(CONFIG_PREEMPT_RT))
- /* In RT irq_work runs in per-cpu kthread, so disable
- * interrupts to avoid preemption and interrupts and
- * reduce the chance of bpf prog executing on this cpu
- * when active counter is busy.
- */
- local_irq_save(flags);
- /* alloc_bulk runs from irq_work which will not preempt a bpf
- * program that does unit_alloc/unit_free since IRQs are
- * disabled there. There is no race to increment 'active'
- * counter. It protects free_llist from corruption in case NMI
- * bpf prog preempted this loop.
+ obj = llist_del_first(&c->free_by_rcu_ttrace);
+ if (!obj)
+ break;
+ add_obj_to_free_list(c, obj);
+ }
+ if (i >= cnt)
+ return;
+
+ for (; i < cnt; i++) {
+ obj = llist_del_first(&c->waiting_for_gp_ttrace);
+ if (!obj)
+ break;
+ add_obj_to_free_list(c, obj);
+ }
+ if (i >= cnt)
+ return;
+
+ memcg = get_memcg(c);
+ old_memcg = set_active_memcg(memcg);
+ for (; i < cnt; i++) {
+ /* Allocate, but don't deplete atomic reserves that typical
+ * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc
+ * will allocate from the current numa node which is what we
+ * want here.
*/
- WARN_ON_ONCE(local_inc_return(&c->active) != 1);
- __llist_add(obj, &c->free_llist);
- c->free_cnt++;
- local_dec(&c->active);
- if (IS_ENABLED(CONFIG_PREEMPT_RT))
- local_irq_restore(flags);
+ obj = __alloc(c, node, gfp);
+ if (!obj)
+ break;
+ add_obj_to_free_list(c, obj);
}
set_active_memcg(old_memcg);
mem_cgroup_put(memcg);
@@ -222,20 +262,24 @@ static void free_one(void *obj, bool percpu)
kfree(obj);
}
-static void free_all(struct llist_node *llnode, bool percpu)
+static int free_all(struct llist_node *llnode, bool percpu)
{
struct llist_node *pos, *t;
+ int cnt = 0;
- llist_for_each_safe(pos, t, llnode)
+ llist_for_each_safe(pos, t, llnode) {
free_one(pos, percpu);
+ cnt++;
+ }
+ return cnt;
}
static void __free_rcu(struct rcu_head *head)
{
- struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu);
+ struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu_ttrace);
- free_all(llist_del_all(&c->waiting_for_gp), !!c->percpu_size);
- atomic_set(&c->call_rcu_in_progress, 0);
+ free_all(llist_del_all(&c->waiting_for_gp_ttrace), !!c->percpu_size);
+ atomic_set(&c->call_rcu_ttrace_in_progress, 0);
}
static void __free_rcu_tasks_trace(struct rcu_head *head)
@@ -254,60 +298,132 @@ static void enque_to_free(struct bpf_mem_cache *c, void *obj)
struct llist_node *llnode = obj;
/* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work.
- * Nothing races to add to free_by_rcu list.
+ * Nothing races to add to free_by_rcu_ttrace list.
*/
- __llist_add(llnode, &c->free_by_rcu);
+ llist_add(llnode, &c->free_by_rcu_ttrace);
}
-static void do_call_rcu(struct bpf_mem_cache *c)
+static void do_call_rcu_ttrace(struct bpf_mem_cache *c)
{
struct llist_node *llnode, *t;
- if (atomic_xchg(&c->call_rcu_in_progress, 1))
+ if (atomic_xchg(&c->call_rcu_ttrace_in_progress, 1)) {
+ if (unlikely(READ_ONCE(c->draining))) {
+ llnode = llist_del_all(&c->free_by_rcu_ttrace);
+ free_all(llnode, !!c->percpu_size);
+ }
return;
+ }
+
+ WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
+ llist_for_each_safe(llnode, t, llist_del_all(&c->free_by_rcu_ttrace))
+ llist_add(llnode, &c->waiting_for_gp_ttrace);
+
+ if (unlikely(READ_ONCE(c->draining))) {
+ __free_rcu(&c->rcu_ttrace);
+ return;
+ }
- WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
- llist_for_each_safe(llnode, t, __llist_del_all(&c->free_by_rcu))
- /* There is no concurrent __llist_add(waiting_for_gp) access.
- * It doesn't race with llist_del_all either.
- * But there could be two concurrent llist_del_all(waiting_for_gp):
- * from __free_rcu() and from drain_mem_cache().
- */
- __llist_add(llnode, &c->waiting_for_gp);
/* Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
* If RCU Tasks Trace grace period implies RCU grace period, free
* these elements directly, else use call_rcu() to wait for normal
* progs to finish and finally do free_one() on each element.
*/
- call_rcu_tasks_trace(&c->rcu, __free_rcu_tasks_trace);
+ call_rcu_tasks_trace(&c->rcu_ttrace, __free_rcu_tasks_trace);
}
static void free_bulk(struct bpf_mem_cache *c)
{
+ struct bpf_mem_cache *tgt = c->tgt;
struct llist_node *llnode, *t;
unsigned long flags;
int cnt;
+ WARN_ON_ONCE(tgt->unit_size != c->unit_size);
+ WARN_ON_ONCE(tgt->percpu_size != c->percpu_size);
+
do {
- if (IS_ENABLED(CONFIG_PREEMPT_RT))
- local_irq_save(flags);
- WARN_ON_ONCE(local_inc_return(&c->active) != 1);
+ inc_active(c, &flags);
llnode = __llist_del_first(&c->free_llist);
if (llnode)
cnt = --c->free_cnt;
else
cnt = 0;
- local_dec(&c->active);
- if (IS_ENABLED(CONFIG_PREEMPT_RT))
- local_irq_restore(flags);
+ dec_active(c, &flags);
if (llnode)
- enque_to_free(c, llnode);
+ enque_to_free(tgt, llnode);
} while (cnt > (c->high_watermark + c->low_watermark) / 2);
/* and drain free_llist_extra */
llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra))
- enque_to_free(c, llnode);
- do_call_rcu(c);
+ enque_to_free(tgt, llnode);
+ do_call_rcu_ttrace(tgt);
+}
+
+static void __free_by_rcu(struct rcu_head *head)
+{
+ struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu);
+ struct bpf_mem_cache *tgt = c->tgt;
+ struct llist_node *llnode;
+
+ WARN_ON_ONCE(tgt->unit_size != c->unit_size);
+ WARN_ON_ONCE(tgt->percpu_size != c->percpu_size);
+
+ llnode = llist_del_all(&c->waiting_for_gp);
+ if (!llnode)
+ goto out;
+
+ llist_add_batch(llnode, c->waiting_for_gp_tail, &tgt->free_by_rcu_ttrace);
+
+ /* Objects went through regular RCU GP. Send them to RCU tasks trace */
+ do_call_rcu_ttrace(tgt);
+out:
+ atomic_set(&c->call_rcu_in_progress, 0);
+}
+
+static void check_free_by_rcu(struct bpf_mem_cache *c)
+{
+ struct llist_node *llnode, *t;
+ unsigned long flags;
+
+ /* drain free_llist_extra_rcu */
+ if (unlikely(!llist_empty(&c->free_llist_extra_rcu))) {
+ inc_active(c, &flags);
+ llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra_rcu))
+ if (__llist_add(llnode, &c->free_by_rcu))
+ c->free_by_rcu_tail = llnode;
+ dec_active(c, &flags);
+ }
+
+ if (llist_empty(&c->free_by_rcu))
+ return;
+
+ if (atomic_xchg(&c->call_rcu_in_progress, 1)) {
+ /*
+ * Instead of kmalloc-ing new rcu_head and triggering 10k
+ * call_rcu() to hit rcutree.qhimark and force RCU to notice
+ * the overload just ask RCU to hurry up. There could be many
+ * objects in free_by_rcu list.
+ * This hint reduces memory consumption for an artificial
+ * benchmark from 2 Gbyte to 150 Mbyte.
+ */
+ rcu_request_urgent_qs_task(current);
+ return;
+ }
+
+ WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
+
+ inc_active(c, &flags);
+ WRITE_ONCE(c->waiting_for_gp.first, __llist_del_all(&c->free_by_rcu));
+ c->waiting_for_gp_tail = c->free_by_rcu_tail;
+ dec_active(c, &flags);
+
+ if (unlikely(READ_ONCE(c->draining))) {
+ free_all(llist_del_all(&c->waiting_for_gp), !!c->percpu_size);
+ atomic_set(&c->call_rcu_in_progress, 0);
+ } else {
+ call_rcu_hurry(&c->rcu, __free_by_rcu);
+ }
}
static void bpf_mem_refill(struct irq_work *work)
@@ -321,9 +437,11 @@ static void bpf_mem_refill(struct irq_work *work)
/* irq_work runs on this cpu and kmalloc will allocate
* from the current numa node which is what we want here.
*/
- alloc_bulk(c, c->batch, NUMA_NO_NODE);
+ alloc_bulk(c, c->batch, NUMA_NO_NODE, true);
else if (cnt > c->high_watermark)
free_bulk(c);
+
+ check_free_by_rcu(c);
}
static void notrace irq_work_raise(struct bpf_mem_cache *c)
@@ -345,8 +463,7 @@ static void notrace irq_work_raise(struct bpf_mem_cache *c)
* Typical case will be between 11K and 116K closer to 11K.
* bpf progs can and should share bpf_mem_cache when possible.
*/
-
-static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu)
+static void init_refill_work(struct bpf_mem_cache *c)
{
init_irq_work(&c->refill_work, bpf_mem_refill);
if (c->unit_size <= 256) {
@@ -362,12 +479,36 @@ static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu)
c->high_watermark = max(96 * 256 / c->unit_size, 3);
}
c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1);
+}
+static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu)
+{
/* To avoid consuming memory assume that 1st run of bpf
* prog won't be doing more than 4 map_update_elem from
* irq disabled region
*/
- alloc_bulk(c, c->unit_size <= 256 ? 4 : 1, cpu_to_node(cpu));
+ alloc_bulk(c, c->unit_size <= 256 ? 4 : 1, cpu_to_node(cpu), false);
+}
+
+static int check_obj_size(struct bpf_mem_cache *c, unsigned int idx)
+{
+ struct llist_node *first;
+ unsigned int obj_size;
+
+ first = c->free_llist.first;
+ if (!first)
+ return 0;
+
+ if (c->percpu_size)
+ obj_size = pcpu_alloc_size(((void **)first)[1]);
+ else
+ obj_size = ksize(first);
+ if (obj_size != c->unit_size) {
+ WARN_ONCE(1, "bpf_mem_cache[%u]: percpu %d, unexpected object size %u, expect %u\n",
+ idx, c->percpu_size, obj_size, c->unit_size);
+ return -EINVAL;
+ }
+ return 0;
}
/* When size != 0 bpf_mem_cache for each cpu.
@@ -380,20 +521,22 @@ static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu)
int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu)
{
static u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096};
+ int cpu, i, err, unit_size, percpu_size = 0;
struct bpf_mem_caches *cc, __percpu *pcc;
struct bpf_mem_cache *c, __percpu *pc;
struct obj_cgroup *objcg = NULL;
- int cpu, i, unit_size, percpu_size = 0;
+
+ /* room for llist_node and per-cpu pointer */
+ if (percpu)
+ percpu_size = LLIST_NODE_SZ + sizeof(void *);
+ ma->percpu = percpu;
if (size) {
pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL);
if (!pc)
return -ENOMEM;
- if (percpu)
- /* room for llist_node and per-cpu pointer */
- percpu_size = LLIST_NODE_SZ + sizeof(void *);
- else
+ if (!percpu)
size += LLIST_NODE_SZ; /* room for llist_node */
unit_size = size;
@@ -406,19 +549,18 @@ int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu)
c->unit_size = unit_size;
c->objcg = objcg;
c->percpu_size = percpu_size;
+ c->tgt = c;
+ init_refill_work(c);
prefill_mem_cache(c, cpu);
}
ma->cache = pc;
return 0;
}
- /* size == 0 && percpu is an invalid combination */
- if (WARN_ON_ONCE(percpu))
- return -EINVAL;
-
pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL);
if (!pcc)
return -ENOMEM;
+ err = 0;
#ifdef CONFIG_MEMCG_KMEM
objcg = get_obj_cgroup_from_current();
#endif
@@ -428,11 +570,32 @@ int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu)
c = &cc->cache[i];
c->unit_size = sizes[i];
c->objcg = objcg;
+ c->percpu_size = percpu_size;
+ c->tgt = c;
+
+ init_refill_work(c);
+ /* Another bpf_mem_cache will be used when allocating
+ * c->unit_size in bpf_mem_alloc(), so doesn't prefill
+ * for the bpf_mem_cache because these free objects will
+ * never be used.
+ */
+ if (i != bpf_mem_cache_idx(c->unit_size))
+ continue;
prefill_mem_cache(c, cpu);
+ err = check_obj_size(c, i);
+ if (err)
+ goto out;
}
}
+
+out:
ma->caches = pcc;
- return 0;
+ /* refill_work is either zeroed or initialized, so it is safe to
+ * call irq_work_sync().
+ */
+ if (err)
+ bpf_mem_alloc_destroy(ma);
+ return err;
}
static void drain_mem_cache(struct bpf_mem_cache *c)
@@ -441,19 +604,57 @@ static void drain_mem_cache(struct bpf_mem_cache *c)
/* No progs are using this bpf_mem_cache, but htab_map_free() called
* bpf_mem_cache_free() for all remaining elements and they can be in
- * free_by_rcu or in waiting_for_gp lists, so drain those lists now.
+ * free_by_rcu_ttrace or in waiting_for_gp_ttrace lists, so drain those lists now.
*
- * Except for waiting_for_gp list, there are no concurrent operations
+ * Except for waiting_for_gp_ttrace list, there are no concurrent operations
* on these lists, so it is safe to use __llist_del_all().
*/
- free_all(__llist_del_all(&c->free_by_rcu), percpu);
- free_all(llist_del_all(&c->waiting_for_gp), percpu);
+ free_all(llist_del_all(&c->free_by_rcu_ttrace), percpu);
+ free_all(llist_del_all(&c->waiting_for_gp_ttrace), percpu);
free_all(__llist_del_all(&c->free_llist), percpu);
free_all(__llist_del_all(&c->free_llist_extra), percpu);
+ free_all(__llist_del_all(&c->free_by_rcu), percpu);
+ free_all(__llist_del_all(&c->free_llist_extra_rcu), percpu);
+ free_all(llist_del_all(&c->waiting_for_gp), percpu);
+}
+
+static void check_mem_cache(struct bpf_mem_cache *c)
+{
+ WARN_ON_ONCE(!llist_empty(&c->free_by_rcu_ttrace));
+ WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
+ WARN_ON_ONCE(!llist_empty(&c->free_llist));
+ WARN_ON_ONCE(!llist_empty(&c->free_llist_extra));
+ WARN_ON_ONCE(!llist_empty(&c->free_by_rcu));
+ WARN_ON_ONCE(!llist_empty(&c->free_llist_extra_rcu));
+ WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
+}
+
+static void check_leaked_objs(struct bpf_mem_alloc *ma)
+{
+ struct bpf_mem_caches *cc;
+ struct bpf_mem_cache *c;
+ int cpu, i;
+
+ if (ma->cache) {
+ for_each_possible_cpu(cpu) {
+ c = per_cpu_ptr(ma->cache, cpu);
+ check_mem_cache(c);
+ }
+ }
+ if (ma->caches) {
+ for_each_possible_cpu(cpu) {
+ cc = per_cpu_ptr(ma->caches, cpu);
+ for (i = 0; i < NUM_CACHES; i++) {
+ c = &cc->cache[i];
+ check_mem_cache(c);
+ }
+ }
+ }
}
static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma)
{
+ check_leaked_objs(ma);
free_percpu(ma->cache);
free_percpu(ma->caches);
ma->cache = NULL;
@@ -462,8 +663,8 @@ static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma)
static void free_mem_alloc(struct bpf_mem_alloc *ma)
{
- /* waiting_for_gp lists was drained, but __free_rcu might
- * still execute. Wait for it now before we freeing percpu caches.
+ /* waiting_for_gp[_ttrace] lists were drained, but RCU callbacks
+ * might still execute. Wait for them.
*
* rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(),
* but rcu_barrier_tasks_trace() and rcu_barrier() below are only used
@@ -472,7 +673,8 @@ static void free_mem_alloc(struct bpf_mem_alloc *ma)
* rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by
* using rcu_trace_implies_rcu_gp() as well.
*/
- rcu_barrier_tasks_trace();
+ rcu_barrier(); /* wait for __free_by_rcu */
+ rcu_barrier_tasks_trace(); /* wait for __free_rcu */
if (!rcu_trace_implies_rcu_gp())
rcu_barrier();
free_mem_alloc_no_barrier(ma);
@@ -498,7 +700,7 @@ static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress)
return;
}
- copy = kmalloc(sizeof(*ma), GFP_KERNEL);
+ copy = kmemdup(ma, sizeof(*ma), GFP_KERNEL);
if (!copy) {
/* Slow path with inline barrier-s */
free_mem_alloc(ma);
@@ -506,10 +708,7 @@ static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress)
}
/* Defer barriers into worker to let the rest of map memory to be freed */
- copy->cache = ma->cache;
- ma->cache = NULL;
- copy->caches = ma->caches;
- ma->caches = NULL;
+ memset(ma, 0, sizeof(*ma));
INIT_WORK(&copy->work, free_mem_alloc_deferred);
queue_work(system_unbound_wq, &copy->work);
}
@@ -524,17 +723,10 @@ void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma)
rcu_in_progress = 0;
for_each_possible_cpu(cpu) {
c = per_cpu_ptr(ma->cache, cpu);
- /*
- * refill_work may be unfinished for PREEMPT_RT kernel
- * in which irq work is invoked in a per-CPU RT thread.
- * It is also possible for kernel with
- * arch_irq_work_has_interrupt() being false and irq
- * work is invoked in timer interrupt. So waiting for
- * the completion of irq work to ease the handling of
- * concurrency.
- */
+ WRITE_ONCE(c->draining, true);
irq_work_sync(&c->refill_work);
drain_mem_cache(c);
+ rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
}
/* objcg is the same across cpus */
@@ -548,8 +740,10 @@ void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma)
cc = per_cpu_ptr(ma->caches, cpu);
for (i = 0; i < NUM_CACHES; i++) {
c = &cc->cache[i];
+ WRITE_ONCE(c->draining, true);
irq_work_sync(&c->refill_work);
drain_mem_cache(c);
+ rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
}
}
@@ -581,16 +775,23 @@ static void notrace *unit_alloc(struct bpf_mem_cache *c)
local_irq_save(flags);
if (local_inc_return(&c->active) == 1) {
llnode = __llist_del_first(&c->free_llist);
- if (llnode)
+ if (llnode) {
cnt = --c->free_cnt;
+ *(struct bpf_mem_cache **)llnode = c;
+ }
}
local_dec(&c->active);
- local_irq_restore(flags);
WARN_ON(cnt < 0);
if (cnt < c->low_watermark)
irq_work_raise(c);
+ /* Enable IRQ after the enqueue of irq work completes, so irq work
+ * will run after IRQ is enabled and free_llist may be refilled by
+ * irq work before other task preempts current task.
+ */
+ local_irq_restore(flags);
+
return llnode;
}
@@ -606,6 +807,12 @@ static void notrace unit_free(struct bpf_mem_cache *c, void *ptr)
BUILD_BUG_ON(LLIST_NODE_SZ > 8);
+ /*
+ * Remember bpf_mem_cache that allocated this object.
+ * The hint is not accurate.
+ */
+ c->tgt = *(struct bpf_mem_cache **)llnode;
+
local_irq_save(flags);
if (local_inc_return(&c->active) == 1) {
__llist_add(llnode, &c->free_llist);
@@ -620,11 +827,37 @@ static void notrace unit_free(struct bpf_mem_cache *c, void *ptr)
llist_add(llnode, &c->free_llist_extra);
}
local_dec(&c->active);
- local_irq_restore(flags);
if (cnt > c->high_watermark)
/* free few objects from current cpu into global kmalloc pool */
irq_work_raise(c);
+ /* Enable IRQ after irq_work_raise() completes, otherwise when current
+ * task is preempted by task which does unit_alloc(), unit_alloc() may
+ * return NULL unexpectedly because irq work is already pending but can
+ * not been triggered and free_llist can not be refilled timely.
+ */
+ local_irq_restore(flags);
+}
+
+static void notrace unit_free_rcu(struct bpf_mem_cache *c, void *ptr)
+{
+ struct llist_node *llnode = ptr - LLIST_NODE_SZ;
+ unsigned long flags;
+
+ c->tgt = *(struct bpf_mem_cache **)llnode;
+
+ local_irq_save(flags);
+ if (local_inc_return(&c->active) == 1) {
+ if (__llist_add(llnode, &c->free_by_rcu))
+ c->free_by_rcu_tail = llnode;
+ } else {
+ llist_add(llnode, &c->free_llist_extra_rcu);
+ }
+ local_dec(&c->active);
+
+ if (!atomic_read(&c->call_rcu_in_progress))
+ irq_work_raise(c);
+ local_irq_restore(flags);
}
/* Called from BPF program or from sys_bpf syscall.
@@ -646,6 +879,17 @@ void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size)
return !ret ? NULL : ret + LLIST_NODE_SZ;
}
+static notrace int bpf_mem_free_idx(void *ptr, bool percpu)
+{
+ size_t size;
+
+ if (percpu)
+ size = pcpu_alloc_size(*((void **)ptr));
+ else
+ size = ksize(ptr - LLIST_NODE_SZ);
+ return bpf_mem_cache_idx(size);
+}
+
void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr)
{
int idx;
@@ -653,13 +897,27 @@ void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr)
if (!ptr)
return;
- idx = bpf_mem_cache_idx(ksize(ptr - LLIST_NODE_SZ));
+ idx = bpf_mem_free_idx(ptr, ma->percpu);
if (idx < 0)
return;
unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr);
}
+void notrace bpf_mem_free_rcu(struct bpf_mem_alloc *ma, void *ptr)
+{
+ int idx;
+
+ if (!ptr)
+ return;
+
+ idx = bpf_mem_free_idx(ptr, ma->percpu);
+ if (idx < 0)
+ return;
+
+ unit_free_rcu(this_cpu_ptr(ma->caches)->cache + idx, ptr);
+}
+
void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma)
{
void *ret;
@@ -676,6 +934,14 @@ void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr)
unit_free(this_cpu_ptr(ma->cache), ptr);
}
+void notrace bpf_mem_cache_free_rcu(struct bpf_mem_alloc *ma, void *ptr)
+{
+ if (!ptr)
+ return;
+
+ unit_free_rcu(this_cpu_ptr(ma->cache), ptr);
+}
+
/* Directly does a kfree() without putting 'ptr' back to the free_llist
* for reuse and without waiting for a rcu_tasks_trace gp.
* The caller must first go through the rcu_tasks_trace gp for 'ptr'
@@ -712,9 +978,49 @@ void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags)
memcg = get_memcg(c);
old_memcg = set_active_memcg(memcg);
ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT);
+ if (ret)
+ *(struct bpf_mem_cache **)ret = c;
set_active_memcg(old_memcg);
mem_cgroup_put(memcg);
}
return !ret ? NULL : ret + LLIST_NODE_SZ;
}
+
+/* The alignment of dynamic per-cpu area is 8, so c->unit_size and the
+ * actual size of dynamic per-cpu area will always be matched and there is
+ * no need to adjust size_index for per-cpu allocation. However for the
+ * simplicity of the implementation, use an unified size_index for both
+ * kmalloc and per-cpu allocation.
+ */
+static __init int bpf_mem_cache_adjust_size(void)
+{
+ unsigned int size;
+
+ /* Adjusting the indexes in size_index() according to the object_size
+ * of underlying slab cache, so bpf_mem_alloc() will select a
+ * bpf_mem_cache with unit_size equal to the object_size of
+ * the underlying slab cache.
+ *
+ * The maximal value of KMALLOC_MIN_SIZE and __kmalloc_minalign() is
+ * 256-bytes, so only do adjustment for [8-bytes, 192-bytes].
+ */
+ for (size = 192; size >= 8; size -= 8) {
+ unsigned int kmalloc_size, index;
+
+ kmalloc_size = kmalloc_size_roundup(size);
+ if (kmalloc_size == size)
+ continue;
+
+ if (kmalloc_size <= 192)
+ index = size_index[(kmalloc_size - 1) / 8];
+ else
+ index = fls(kmalloc_size - 1) - 1;
+ /* Only overwrite if necessary */
+ if (size_index[(size - 1) / 8] != index)
+ size_index[(size - 1) / 8] = index;
+ }
+
+ return 0;
+}
+subsys_initcall(bpf_mem_cache_adjust_size);