diff options
Diffstat (limited to 'arch/um/kernel/irq.c')
-rw-r--r-- | arch/um/kernel/irq.c | 112 |
1 files changed, 0 insertions, 112 deletions
diff --git a/arch/um/kernel/irq.c b/arch/um/kernel/irq.c index 534e91797f89..338450741aac 100644 --- a/arch/um/kernel/irq.c +++ b/arch/um/kernel/irq.c @@ -674,115 +674,3 @@ void __init init_IRQ(void) /* Initialize EPOLL Loop */ os_setup_epoll(); } - -/* - * IRQ stack entry and exit: - * - * Unlike i386, UML doesn't receive IRQs on the normal kernel stack - * and switch over to the IRQ stack after some preparation. We use - * sigaltstack to receive signals on a separate stack from the start. - * These two functions make sure the rest of the kernel won't be too - * upset by being on a different stack. The IRQ stack has a - * thread_info structure at the bottom so that current et al continue - * to work. - * - * to_irq_stack copies the current task's thread_info to the IRQ stack - * thread_info and sets the tasks's stack to point to the IRQ stack. - * - * from_irq_stack copies the thread_info struct back (flags may have - * been modified) and resets the task's stack pointer. - * - * Tricky bits - - * - * What happens when two signals race each other? UML doesn't block - * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal - * could arrive while a previous one is still setting up the - * thread_info. - * - * There are three cases - - * The first interrupt on the stack - sets up the thread_info and - * handles the interrupt - * A nested interrupt interrupting the copying of the thread_info - - * can't handle the interrupt, as the stack is in an unknown state - * A nested interrupt not interrupting the copying of the - * thread_info - doesn't do any setup, just handles the interrupt - * - * The first job is to figure out whether we interrupted stack setup. - * This is done by xchging the signal mask with thread_info->pending. - * If the value that comes back is zero, then there is no setup in - * progress, and the interrupt can be handled. If the value is - * non-zero, then there is stack setup in progress. In order to have - * the interrupt handled, we leave our signal in the mask, and it will - * be handled by the upper handler after it has set up the stack. - * - * Next is to figure out whether we are the outer handler or a nested - * one. As part of setting up the stack, thread_info->real_thread is - * set to non-NULL (and is reset to NULL on exit). This is the - * nesting indicator. If it is non-NULL, then the stack is already - * set up and the handler can run. - */ - -static unsigned long pending_mask; - -unsigned long to_irq_stack(unsigned long *mask_out) -{ - struct thread_info *ti; - unsigned long mask, old; - int nested; - - mask = xchg(&pending_mask, *mask_out); - if (mask != 0) { - /* - * If any interrupts come in at this point, we want to - * make sure that their bits aren't lost by our - * putting our bit in. So, this loop accumulates bits - * until xchg returns the same value that we put in. - * When that happens, there were no new interrupts, - * and pending_mask contains a bit for each interrupt - * that came in. - */ - old = *mask_out; - do { - old |= mask; - mask = xchg(&pending_mask, old); - } while (mask != old); - return 1; - } - - ti = current_thread_info(); - nested = (ti->real_thread != NULL); - if (!nested) { - struct task_struct *task; - struct thread_info *tti; - - task = cpu_tasks[ti->cpu].task; - tti = task_thread_info(task); - - *ti = *tti; - ti->real_thread = tti; - task->stack = ti; - } - - mask = xchg(&pending_mask, 0); - *mask_out |= mask | nested; - return 0; -} - -unsigned long from_irq_stack(int nested) -{ - struct thread_info *ti, *to; - unsigned long mask; - - ti = current_thread_info(); - - pending_mask = 1; - - to = ti->real_thread; - current->stack = to; - ti->real_thread = NULL; - *to = *ti; - - mask = xchg(&pending_mask, 0); - return mask & ~1; -} - |