1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# TASK 26.01"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"ename": "",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31mRunning cells with 'venv (Python 3.11.8)' requires the ipykernel package.\n",
"\u001b[1;31mRun the following command to install 'ipykernel' into the Python environment. \n",
"\u001b[1;31mCommand: '/home/stvnliu/Development/Learn/cs-y13/.devenv/state/venv/bin/python -m pip install ipykernel -U --force-reinstall'"
]
}
],
"source": [
"import datetime\n",
"import pickle\n",
"import random # data generator\n",
"class Car:\n",
" def __init__(self, car_id):\n",
" self.VehicleID = car_id\n",
" self.__Registration = \"\"\n",
" self.__Date = datetime.datetime.now()\n",
" self.__EngineSize = -1\n",
" self.__PurchasePrice = 5900_00\n",
"def data_generator():\n",
" cars = []\n",
" for i in range(40):\n",
" s = \"ID\"\n",
" for i in range(10):\n",
" s += str(random.randint(0, 9))\n",
" cars.append(Car(s))\n",
" return cars\n",
"with open(\"cars.dat\", 'wb+') as carfile:\n",
" for car in data_generator():\n",
" print(car.VehicleID)\n",
" pickle.dump(car, carfile)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|